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A short history of Painlevé equations

• The Painlevé equations possess the so-called Painlevé property: all its solutions
are free from movable branch points.

• Discovered by Painlevé and his colleagues at the beginning of 20th century while
classifying all second-order ordinary differential equations

d2w
dz2 = R(z,w, dw

dz ),

which possess the Painlevé property.

• The solutions of Painlevé equations are called the Painlevé transcendents.
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The Painelvé II equation

Definition:
q′′(s) = 2q3(s) + sq(s)− ν.

• ν = 0: homogeneous PII equation.

• ν ̸= 0: inhomogeneous PII equation.

• All of its solutions are meromorphic in s whose poles are simple with residues ±1.

3



The Painelvé II equation

Definition:
q′′(s) = 2q3(s) + sq(s)− ν.

• ν = 0: homogeneous PII equation.

• ν ̸= 0: inhomogeneous PII equation.

• All of its solutions are meromorphic in s whose poles are simple with residues ±1.

3



Smooth solutions

• For any k, there exists a unique solution to the homogeneous PII equation which
behaves like

kAi(s), s → +∞.

[Hastings-McLeod, ’80]

• By choosing different k, we obtain several classes of well-known solutions of the
PII equation, which are denoted by q(s; k) in what follows.
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Hastings-McLeod solutions

k = ±1: Hastings-McLeod solutions

• Asymptotic behaviors:

q(s;±1) =

 ±
√

− s
2 + O(|s|−5/2), s → −∞,

±Ai(s) + O
(

e−(4/3)s3/2

s1/4

)
, s → +∞.

[Deift-Zhou, ’95]
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Hastings-McLeod solutions

• q(s;±1) are real and pole-free on the real axis.
[Hastings-McLeod, ’80]
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Ablowitz-Segur solutions

−1 < k < 1: Ablowitz-Segur solutions

• Asymptotic behaviors:

q(s; k) =



√
−2χ

(−s)1/4 cos
( 2

3 (−s)3/2 + χ log(8(−s)3/2) + ϕ
)

+O
(

ln |s|
|s|5/4

)
, s → −∞,

kAi(s) + O
(

e−(4/3)s3/2

s1/4

)
, s → +∞,

where
χ :=

1
2π log(1 − k2), ϕ := −π4 − arg Γ(iχ)− arg(−ki).

[Ablowitz-Segur, ’76; Segur-Ablowitz, ’81]
[Hastings-McLeod, ’80; Clarkson-McLeod, ’88; Deift-Zhou, ’95]
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Extensions of Ablowitz-Segur solutions

k ∈ C \ ((−∞,−1] ∪ [1,∞)): (complex) Ablowitz-Segur solutions

• q(s; k) is pole-free on the real line with the asymptotics

q(s; k) =


√
−2χ

(−s)1/4 sin
(

2
3(−s)3/2 + χ ln(8(−s)3/2) + ϕ̃

)
+O

(
1

|s|2−3| Im χ|

)
, s → −∞,

kAi(s) +O
(

e−(4/3)s3/2

s1/4

)
, s → +∞.

Here, χ = 1
2π log(1 − k2) with | Imχ| < 1

2 and

ϕ̃ := −π4 − i
2 ln Γ(−iχ)

Γ(iχ) .

[Bogatskiy-Claeys-Its, ’16]
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Applications: The Tracy-Widom distribution

Definition:
F2(s; γ) = det(I − γKAi),

where KAi is the integral operator acting on L2(s,∞) with the Airy kernel

KAi(x, y) =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x − y ,

i.e.,

F2(s; γ) = 1 +
∞∑

n=1

(−1)n

n!

∫ ∞

s
· · ·
∫ ∞

s
det(γKAi(ξi, ξj))

n
i,j=1 dξ1 · · · dξn.

• F2(s; γ) gives us the celebrated Tracy-Widom distribution (γ = 1) and its
deformed version (0 < γ < 1).
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Applications: The Tracy-Widom distribution

Integral representations:

F2(s; γ) = exp
(∫ ∞

s
−(x − s)q2(x; γ)dx

)
= exp

(
−
∫ ∞

s
H(x; γ)dx

)
,

where q satisfies Painlevé II equation

q′′(x) = xq(x) + 2q3(x),

subject to the following boundary conditions at +∞:

q(x; γ) ∼
{

Ai(x), γ = 1 (Hastings-McLeod solution),
√
γAi(x), 0 < γ < 1 (Ablowitz-Segur solution),

and H is the associated (scaled) Hamiltonian.
[Tracy-Widom, ’94; Bohigas-Carvalho-Pato, ’09]
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Noncommutative Painlevé II equation

Noncommutative Painlevé II equation:

D2β1 = 4sβ1 + 4β1s + 8β3
1 , s := diag(s1, . . . , sn), D :=

n∑
j=1

∂

∂sj
, n ∈ N,

where β1 = β1(⃗s) is an n × n matrix-valued function of s⃗ := (s1, . . . , sn).

• If n = 1, one has β1(s1) =
√

2q(2
√

2s1).

• Introduced in the context of infinite Toda system.

[Retakh-Rubtsov, ’10]
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Noncommutative Painlevé II equation

Noncommutative Painlevé II equation:

D2β1 = 4sβ1 + 4β1s + 8β3
1 , s := diag(s1, . . . , sn), D :=

n∑
j=1

∂

∂sj
, n ∈ N,

where β1 = β1(⃗s) is an n × n matrix-valued function of s⃗ := (s1, . . . , sn).

• Related to Tracy-Widom distribution function of the general β-ensembles with the
even values of β.

[Its-Prokhorov, ’20; Rumanov, ’15&’16]

• Related to the systems of Calogero type.

[Bertola-Cafasso-Rubtsov, ’18]
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A family of special solutions for the noncommutative Painlevé II equation

Let C =
(
cjk
)n

j,k=1 be an arbitrary n × n constant matrix, and set

S :=
1
n

n∑
i=1

sj, δi := si − S, i = 1, . . . , n.

Theorem [Bertola-Cafasso, ’12]
There exists a unique solution β1(⃗s) = β1(⃗s;C) of the noncommutative Painlevé II
equation such that

(β1)kl = −cklAi(sk + sl) +O
(√

Se− 4
3 (2S−2ϵS)

3
2
)
, S → +∞,

with |δj| ≤ ϵS, where ϵ ∈ [0, 1) is an arbitrary real number and (β1)kl stands for the
(k, l)-th entry of β1. If the singular values of C lie in [0, 1], then the associated
solution is pole free for s⃗ ∈ Rn.
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Today’s topic

• Asymptotics of β1(⃗s;C) as S → −∞ for a class of structured matrices C.

14



Main results
.



The structures of C

Assumption
We assume that C = ΛP, where Λ = diag(µ1, . . . , µn) with µi ∈ C,
|µi| ≤ 1, i = 1, . . . , n, and P is a permutation matrix such that C2 is a diagonal
matrix.

Example
If n = 3, C takes one of the following forms:µ1 0 0

0 µ2 0
0 0 µ3

 ,

 0 0 µ1
0 µ2 0
µ3 0 0

 ,

 0 µ1 0
µ2 0 0
0 0 µ3

 ,

µ1 0 0
0 0 µ2
0 µ3 0

 .
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Large negative S asymptotics of β1

Theorem [Liu-Yao-Z., arXiv:2507.09472]
Under our assumption on C, we have

(β1)kl =


√

−sk−sl
2 ckl +O(S−1), cklclk = 1,

(−sk−sl)
− 1

4√
π

cos
(

i
(
θ̂k
(√

sk+sl
S

)
+ θ̂l

(√
sk+sl

S

))
− π

4

)
ckl +O(S−1), cklclk = 0,

(−sk − sl)
− 1

4

√
− ln(1−cklclk)

πcklclk
cosψ(sk, sl)ckl +O(S−1), cklclk ̸= 0, 1,

if S → −∞ and δi = ϵiS with ϵi ∈ (−1, 1) being fixed,
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Large negative S asymptotics of β1

Theorem [Liu-Yao-Z., arXiv:2507.09472]
where the function ψ(sk, sl) is related to the parameters ckl and clk through the
connection formula

ψ(sk, sl) := i
(
θ̂k

(√
sk + sl

S

)
+ θ̂l

(√
sk + sl

S

))
+

3
4π ln(1 − cklclk) ln (−4(sk + sl))

+
i
2 ln

Γ
(
− ln(1−cklclk)

2πi

)
Γ
(

ln(1−cklclk)
2πi

) +
π

4

with
θ̂k(z) := i(−S) 3

2

(
z3

6 − sk
S z
)
.
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Remarks

• If n = 1, we recover previous asymptotic formulas.

• If n > 1, special features of β1.
• (β1)kl corresponds to either an extension of the Hastings-McLeod solution or an

extension of the Ablowitz–Segur solution for the Painlevé II equation, depending on
the value of the product cklclk.

• Asymptotic behavior of(β1)kl as S → −∞ cannot be deduced solely from its
behavior as S → +∞ in the Ablowitz–Segur case.
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Open problem

• Large negative S asymptotics of β1 for general C.

• If C is a 2 × 2 Hermitian matrix with eigenvalues in (−1, 1), Painlevé V
asymptotics in a different asymptotic regime.

[Du-Xu-Zhao, ’25]
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About the proofs
.



A Fredholm determinant representation of β1

Let Ai⃗s be a matrix version of the Airy-convolution operator acting on L2 (R+,Cn)

defined by (
Ai⃗s⃗f

)
(x) :=

∫
R+

Ai(x + y; s⃗)⃗f(y)dy

with f⃗ := (f1, · · · , fn)T and

Ai(x; s⃗) :=
∫
γ+

eθ(µ)Ceθ(µ)eixµ dµ
2π =

(
cjk Ai (x + sj + sk)

)n
j,k=1 ,

where

θ(µ) := i diag
(
µ3

6 + s1µ,
µ3

6 + s2µ, . . . ,
µ3

6 + snµ

)
.
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A Fredholm determinant representation of β1

A noncommutative (matrix) version of the Tracy-Widom distribution:

det
(
I −Ai2s⃗

)
= exp

(
−4
∫ ∞

s
(t − s)Tr

(
β1(t + δ⃗)2

)
dt
)
.

[Bertola-Cafasso, ’12]
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A Riemann-Hilbert (RH) characterization of β1

(1) Ξ(λ) := Ξ(λ; s⃗,C) is defined and analytic in C \ (γ+ ∪ γ−).

..
0
.

γ+

.

γ+

.

γ−

.

γ−

Figure 1: The jump contours γ+ and γ− in the RH problem for Ξ.
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A Riemann-Hilbert (RH) characterization of β1

(b) For λ ∈ γ+ ∪ γ−, we have

Ξ+(λ) = Ξ−(λ)

(
In eθ(λ)Ceθ(λ) χγ+

e−θ(λ)Ce−θ(λ) χγ− In

)
.

(c) As λ→ ∞ with λ ∈ C \ (γ+ ∪ γ−), we have

Ξ(λ) = I2n +
Ξ1
λ

+O(λ−2),

where Ξ1 is independent of λ.
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A Riemann-Hilbert (RH) characterization of β1

The connection between β1 and Ξ:

β1(⃗s) = −i lim
λ→∞

λ [Ξ]12 (λ; s⃗).

[Bertola-Cafasso, ’12]

Asymptotic analysis of Ξ for large S:

• S > 0: straightforward.
• S < 0: significant obstacles.

A key observation: the structures of C allow us to decompose the original RH
problem into two RH problems by introducing proper index sets associated with the
permutation matrix P.
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Rescaling and decomposition of Ξ

• Rescaling:
Ψ(z) = Ξ(

√
−Sz)eθ̂(z)⊗σ3 ,

where

θ̂(z) := i(−S) 3
2

[
1
6z3In −

z
Ss
]
.

• Two index sets: recall that C = ΛP, where Λ = diag(µ1, . . . , µn) and P is a
permutation matrix such that C2 is a diagonal matrix. Thus,

P =
n∑

i=1
Eiσ(i), σ2 = id.
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The decomposition of Ψ

• Two index sets: recall the permutation σ associated with P, we set

I := {i : ciσ(i)cσ(i)i = 1}, J = {1, . . . , n} \ I.

• The decomposition:

Ψ(z) = ΨI(z)
(∑

i∈I Eii 0
0

∑
i∈I Eii

)
+ΨJ (z)

(∑
j∈J Ejj 0
0

∑
j∈J Ejj

)
,

where

ΨI(z) := Ψ(z)
(∑

i∈I Eii 0
0

∑
i∈I Eii

)
+

(∑
j∈J Ejj 0
0

∑
j∈J Ejj

)
,

ΨJ (z) := Ψ(z)
(∑

j∈J Ejj 0
0

∑
j∈J Ejj

)
+

(∑
i∈I Eii 0
0

∑
i∈I Eii

)
.
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RH problem for ΨI

(a) ΨI(z) is defined and analytic in C \ (γ+ ∪ γ−).
(b) For z ∈ γ+ ∪ γ−, we have

ΨI,+(z) = ΨI,−(z)
(

In
∑

i∈I EiiCχγ+∑
i∈I EiiCχγ− In

)
.

(c) As z → ∞ with z ∈ C \ (γ+ ∪ γ−), we have

ΨI(z) =
(

I2n +
ΨI,1√
−Sz

+O
(
z−2)) e

∑
i∈I Eiiθ̂(z)⊗σ3 ,

where

ΨI,1 = Ξ1

(∑
i∈I Eii 0
0

∑
i∈I Eii

)
.
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RH problem for ΨJ

(a) ΨJ (z) is defined and analytic for z ∈ C \ (γ+ ∪ γ−).
(b) For z ∈ γ+ ∪ γ−, we have

ΨJ ,+(z) = ΨJ ,−(z)
(

In
∑

j∈J EjjCχγ+∑
j∈J EjjCχγ− In

)
.

(c) As z → ∞ with z ∈ C \ (γ+ ∪ γ−), we have

ΨJ (z) =
(

I2n +
ΨJ ,1√
−Sz

+O
(
z−2)) e

∑
j∈J Ejjθ̂(z)⊗σ3 ,

where

ΨJ ,1 = Ξ1

(∑
j∈J Ejj 0
0

∑
j∈J Ejj

)
.
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Asymptotic analysis of the RH problems for ΨI and ΨJ

• Asymptotic analysis of the RH problems for ΨI

• Introduction of g-function
• Contour deformation
• Airy parametrix

• Asymptotic analysis of the RH problems for ΨJ

• Introduction of θ̃-function
• Contour deformation
• Lenses opening
• Parabolic cylinder parametrix
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Thanks for your attention!

&

Questions?
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