

Asymptotics for the noncommutative Painlevé II equation

Junwen Liu¹, Luming Yao², Lun Zhang¹

¹Fudan University, ²Shenzhen University

Introduction

Full list of Painlevé equations

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = 6w^2 + z$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = 2w^3 + zw + \alpha$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \frac{1}{w} \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2 - \frac{1}{z} \frac{\mathrm{d}w}{\mathrm{d}z} + \frac{\alpha w^2 + \beta}{z} + \gamma w^3 + \frac{\delta}{w}$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \frac{1}{2w} \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2 + \frac{3}{2}w^3 + 4zw^2 + 2(z^2 - \alpha)w + \frac{\beta}{w}$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \left(\frac{1}{2w} + \frac{1}{w - 1}\right) \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2 - \frac{1}{z} \frac{\mathrm{d}w}{\mathrm{d}z} + \frac{(w - 1)^2}{z^2} \left(\alpha w + \frac{\beta}{w}\right) + \frac{\gamma w}{z}$$

$$+ \frac{\delta w(w + 1)}{w - 1}$$
Painlevé VI...

A short history of Painlevé equations

 The Painlevé equations possess the so-called Painlevé property: all its solutions are free from movable branch points.

A short history of Painlevé equations

- The Painlevé equations possess the so-called Painlevé property: all its solutions are free from movable branch points.
- Discovered by Painlevé and his colleagues at the beginning of 20th century while classifying all second-order ordinary differential equations

$$\frac{\mathrm{d}^2 w}{\mathrm{d} z^2} = \mathcal{R}(z, w, \frac{\mathrm{d} w}{\mathrm{d} z}),$$

which possess the Painlevé property.

A short history of Painlevé equations

- The Painlevé equations possess the so-called Painlevé property: all its solutions are free from movable branch points.
- Discovered by Painlevé and his colleagues at the beginning of 20th century while classifying all second-order ordinary differential equations

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = \mathcal{R}(z, w, \frac{\mathrm{d}w}{\mathrm{d}z}),$$

which possess the Painlevé property.

The solutions of Painlevé equations are called the Painlevé transcendents.

The Painelvé II equation

Definition:

$$q''(s) = 2q^3(s) + sq(s) - \nu.$$

The Painelvé II equation

Definition:

$$q''(s) = 2q^3(s) + sq(s) - \nu.$$

- $\nu = 0$: homogeneous PII equation.
- $\nu \neq 0$: inhomogeneous PII equation.
- All of its solutions are meromorphic in s whose poles are simple with residues ± 1 .

Smooth solutions

• For any k, there exists a unique solution to the homogeneous PII equation which behaves like

$$kAi(s), s \to +\infty.$$

[Hastings-McLeod, '80]

Smooth solutions

• For any k, there exists a unique solution to the homogeneous PII equation which behaves like

$$kAi(s), s \to +\infty.$$

[Hastings-McLeod, '80]

By choosing different k, we obtain several classes of well-known solutions of the PII equation, which are denoted by q(s; k) in what follows.

Hastings-McLeod solutions

$$\mathit{k} = \pm 1$$
: Hastings-McLeod solutions

Hastings-McLeod solutions

$$k = \pm 1$$
: Hastings-McLeod solutions

Asymptotic behaviors:

$$q(s; \pm 1) = \begin{cases} \pm \sqrt{-\frac{s}{2}} + O(|s|^{-5/2}), & s \to -\infty, \\ \pm \text{Ai}(s) + O\left(\frac{e^{-(4/3)s^{3/2}}}{s^{1/4}}\right), & s \to +\infty. \end{cases}$$

[Deift-Zhou, '95]

Hastings-McLeod solutions

• $q(s; \pm 1)$ are real and pole-free on the real axis.

[Hastings-McLeod, '80]

Ablowitz-Segur solutions

-1 < k < 1: Ablowitz-Segur solutions

Ablowitz-Segur solutions

-1 < k < 1: Ablowitz-Segur solutions

Asymptotic behaviors:

$$q(s; k) = \begin{cases} \frac{\sqrt{-2\chi}}{(-s)^{1/4}} \cos\left(\frac{2}{3}(-s)^{3/2} + \chi \log(8(-s)^{3/2}) + \phi\right) \\ +O\left(\frac{\ln|s|}{|s|^{5/4}}\right), & s \to -\infty, \\ k \operatorname{Ai}(s) + O\left(\frac{e^{-(4/3)s^{3/2}}}{s^{1/4}}\right), & s \to +\infty, \end{cases}$$

where

$$\chi:=rac{1}{2\pi}\log(1-k^2),\quad \phi:=-rac{\pi}{4}-\arg\Gamma(i\chi)-\arg(-ki).$$

[Ablowitz-Segur, '76; Segur-Ablowitz, '81]

[Hastings-McLeod, '80; Clarkson-McLeod, '88; Deift-Zhou, '95]

Extensions of Ablowitz-Segur solutions

$$k \in \mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty))$$
: (complex) Ablowitz-Segur solutions

• q(s; k) is pole-free on the real line with the asymptotics

$$q(s;k) = \begin{cases} \frac{\sqrt{-2\chi}}{(-s)^{1/4}} \sin\left(\frac{2}{3}(-s)^{3/2} + \chi \ln(8(-s)^{3/2}) + \tilde{\phi}\right) + \mathcal{O}\left(\frac{1}{|s|^{2-3|\operatorname{Im}\chi|}}\right), & s \to -\infty, \\ k\operatorname{Ai}(s) + \mathcal{O}\left(\frac{e^{-(4/3)s^{3/2}}}{s^{1/4}}\right), & s \to +\infty. \end{cases}$$

Here, $\chi=\frac{1}{2\pi}\log(1-k^2)$ with $|\operatorname{Im}\chi|<\frac{1}{2}$ and

$$\tilde{\phi} := -\frac{\pi}{4} - \frac{\mathrm{i}}{2} \ln \frac{\Gamma(-\mathrm{i}\chi)}{\Gamma(\mathrm{i}\chi)}.$$

[Bogatskiy-Claeys-Its, '16]

Definition:

$$F_2(s; \gamma) = \det(I - \gamma \mathcal{K}_{Ai}),$$

where $\mathcal{K}_{\mathrm{Ai}}$ is the integral operator acting on $L^2(s,\infty)$ with the Airy kernel

$$K_{\mathrm{Ai}}(x,y) = \frac{\mathrm{Ai}(x)\mathrm{Ai}'(y) - \mathrm{Ai}'(x)\mathrm{Ai}(y)}{x-y},$$

i.e.,

$$F_2(s;\gamma) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_s^{\infty} \cdots \int_s^{\infty} \det(\gamma K_{\mathrm{Ai}}(\xi_i, \xi_j))_{i,j=1}^n \, \mathrm{d}\xi_1 \cdots \, \mathrm{d}\xi_n.$$

Definition:

$$F_2(s; \gamma) = \det(I - \gamma \mathcal{K}_{Ai}),$$

where $\mathcal{K}_{\mathrm{Ai}}$ is the integral operator acting on $\mathcal{L}^2(s,\infty)$ with the Airy kernel

$$K_{\mathrm{Ai}}(x,y) = \frac{\mathrm{Ai}(x)\mathrm{Ai}'(y) - \mathrm{Ai}'(x)\mathrm{Ai}(y)}{x-y},$$

i.e.,

$$F_2(s;\gamma) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_s^{\infty} \cdots \int_s^{\infty} \det(\gamma K_{\mathrm{Ai}}(\xi_i, \xi_j))_{i,j=1}^n \, \mathrm{d}\xi_1 \cdots \, \mathrm{d}\xi_n.$$

• $F_2(s; \gamma)$ gives us the celebrated Tracy-Widom distribution $(\gamma = 1)$ and its deformed version $(0 < \gamma < 1)$.

Integral representations:

$$F_2(s;\gamma) = \exp\left(\int_s^\infty -(x-s)q^2(x;\gamma)\,\mathrm{d}x\right) = \exp\left(-\int_s^\infty H(x;\gamma)\,\mathrm{d}x\right),$$

Integral representations:

$$F_2(s;\gamma) = \exp\left(\int_s^\infty -(x-s)q^2(x;\gamma)\,\mathrm{d}x\right) = \exp\left(-\int_s^\infty H(x;\gamma)\,\mathrm{d}x\right),$$

where q satisfies Painlevé II equation

$$q''(x) = xq(x) + 2q^3(x),$$

subject to the following boundary conditions at $+\infty$:

$$q(x;\gamma) \sim \left\{ egin{array}{ll} {
m Ai}(x), & \gamma = 1 \ {
m (Hastings-McLeod solution),} \ \sqrt{\gamma} {
m Ai}(x), & 0 < \gamma < 1 \ {
m (Ablowitz-Segur solution),} \ \end{array}
ight.$$

and H is the associated (scaled) Hamiltonian.

[Tracy-Widom, '94; Bohigas-Carvalho-Pato, '09]

Noncommutative Painlevé II equation:

$$\mathbf{D}^2 \beta_1 = 4\mathbf{s}\beta_1 + 4\beta_1\mathbf{s} + 8\beta_1^3, \quad \mathbf{s} := \operatorname{diag}(s_1, \dots, s_n), \quad \mathbf{D} := \sum_{i=1}^n \frac{\partial}{\partial s_i}, \quad n \in \mathbb{N},$$

where $\beta_1 = \beta_1(\vec{s})$ is an $n \times n$ matrix-valued function of $\vec{s} := (s_1, \dots, s_n)$.

Noncommutative Painlevé II equation:

$$\mathbf{D}^2 \beta_1 = 4\mathbf{s}\beta_1 + 4\beta_1\mathbf{s} + 8\beta_1^3, \quad \mathbf{s} := \operatorname{diag}(s_1, \dots, s_n), \quad \mathbf{D} := \sum_{j=1}^n \frac{\partial}{\partial s_j}, \quad n \in \mathbb{N},$$

where $\beta_1 = \beta_1(\vec{s})$ is an $n \times n$ matrix-valued function of $\vec{s} := (s_1, \dots, s_n)$.

• If
$$n = 1$$
, one has $\beta_1(s_1) = \sqrt{2}q(2\sqrt{2}s_1)$.

Noncommutative Painlevé II equation:

$$\mathbf{D}^2 \beta_1 = 4\mathbf{s}\beta_1 + 4\beta_1\mathbf{s} + 8\beta_1^3, \quad \mathbf{s} := \operatorname{diag}(s_1, \dots, s_n), \quad \mathbf{D} := \sum_{i=1}^n \frac{\partial}{\partial s_i}, \quad n \in \mathbb{N},$$

where $\beta_1 = \beta_1(\vec{s})$ is an $n \times n$ matrix-valued function of $\vec{s} := (s_1, \dots, s_n)$.

- If n = 1, one has $\beta_1(s_1) = \sqrt{2}q(2\sqrt{2}s_1)$.
- Introduced in the context of infinite Toda system.

[Retakh-Rubtsov, '10]

Noncommutative Painlevé II equation:

$$\mathbf{D}^2 \beta_1 = 4\mathbf{s}\beta_1 + 4\beta_1\mathbf{s} + 8\beta_1^3, \quad \mathbf{s} := \operatorname{diag}(s_1, \dots, s_n), \quad \mathbf{D} := \sum_{j=1}^n \frac{\partial}{\partial s_j}, \quad n \in \mathbb{N},$$

where $\beta_1 = \beta_1(\vec{s})$ is an $n \times n$ matrix-valued function of $\vec{s} := (s_1, \dots, s_n)$.

■ Related to Tracy-Widom distribution function of the general β -ensembles with the even values of β .

[Its-Prokhorov, '20; Rumanov, '15&'16]

Related to the systems of Calogero type.

[Bertola-Cafasso-Rubtsov, '18]

A family of special solutions for the noncommutative Painlevé II equation

Let $C = (c_{jk})_{i,k=1}^n$ be an arbitrary $n \times n$ constant matrix, and set

$$S:=rac{1}{n}\sum_{i=1}^n s_i, \qquad \delta_i:=s_i-S, \quad i=1,\ldots,n.$$

A family of special solutions for the noncommutative Painlevé II equation

Let $C = (c_{jk})_{i,k=1}^n$ be an arbitrary $n \times n$ constant matrix, and set

$$S:=rac{1}{n}\sum_{i=1}^n s_i, \qquad \delta_i:=s_i-S, \quad i=1,\ldots,n.$$

Theorem [Bertola-Cafasso, '12]

There exists a unique solution $\beta_1(\vec{s}) = \beta_1(\vec{s}; C)$ of the noncommutative Painlevé II equation such that

$$(eta_1)_{kl} = -c_{kl} \mathrm{Ai}(s_k + s_l) + \mathcal{O}\left(\sqrt{S} e^{-rac{4}{3}(2S - 2\epsilon S)^{rac{3}{2}}}\right), \qquad S o +\infty,$$

with $|\delta_j| \leq \epsilon S$, where $\epsilon \in [0,1)$ is an arbitrary real number and $(\beta_1)_{kl}$ stands for the (k,l)-th entry of β_1 . If the singular values of C lie in [0,1], then the associated solution is pole free for $\vec{s} \in \mathbb{R}^n$.

Today's topic

• Asymptotics of $\beta_1(\vec{s}; C)$ as $S \to -\infty$ for a class of structured matrices C.

Main results

The structures of C

Assumption

We assume that $C = \Lambda P$, where $\Lambda = \operatorname{diag}(\mu_1, \dots, \mu_n)$ with $\mu_i \in \mathbb{C}$, $|\mu_i| \leq 1, i = 1, \dots, n$, and P is a permutation matrix such that C^2 is a diagonal matrix.

The structures of C

Assumption

We assume that $C = \Lambda P$, where $\Lambda = \operatorname{diag}(\mu_1, \dots, \mu_n)$ with $\mu_i \in \mathbb{C}$, $|\mu_i| \leq 1, i = 1, \dots, n$, and P is a permutation matrix such that C^2 is a diagonal matrix.

Example

If n = 3, C takes one of the following forms:

$$\begin{pmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & \mu_1 \\ 0 & \mu_2 & 0 \\ \mu_3 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & \mu_1 & 0 \\ \mu_2 & 0 & 0 \\ 0 & 0 & \mu_3 \end{pmatrix}, \quad \begin{pmatrix} \mu_1 & 0 & 0 \\ 0 & 0 & \mu_2 \\ 0 & \mu_3 & 0 \end{pmatrix}.$$

Large negative S asymptotics of β_1

Theorem [Liu-Yao-Z., arXiv:2507.09472]

Under our assumption on C, we have

$$(\beta_{1})_{kl} = \begin{cases} \sqrt{\frac{-s_{k}-s_{l}}{2}} c_{kl} + \mathcal{O}(S^{-1}), & c_{kl}c_{lk} = 1, \\ \frac{(-s_{k}-s_{l})^{-\frac{1}{4}}}{\sqrt{\pi}} \cos\left(i\left(\widehat{\theta}_{k}\left(\sqrt{\frac{s_{k}+s_{l}}{S}}\right) + \widehat{\theta}_{l}\left(\sqrt{\frac{s_{k}+s_{l}}{S}}\right)\right) - \frac{\pi}{4}\right) c_{kl} + \mathcal{O}(S^{-1}), & c_{kl}c_{lk} = 0, \\ (-s_{k}-s_{l})^{-\frac{1}{4}} \sqrt{\frac{-\ln(1-c_{kl}c_{lk})}{\pi c_{kl}c_{lk}}} \cos\psi(s_{k}, s_{l})c_{kl} + \mathcal{O}(S^{-1}), & c_{kl}c_{lk} \neq 0, \end{cases}$$

if $S \to -\infty$ and $\delta_i = \epsilon_i S$ with $\epsilon_i \in (-1,1)$ being fixed,

Large negative S asymptotics of β_1

Theorem [Liu-Yao-Z., arXiv:2507.09472]

where the function $\psi(s_k, s_l)$ is related to the parameters c_{kl} and c_{lk} through the connection formula

$$\begin{split} \psi(s_k,s_l) := \mathrm{i} \left(\widehat{\theta}_k \left(\sqrt{\frac{s_k + s_l}{S}} \right) + \widehat{\theta}_l \left(\sqrt{\frac{s_k + s_l}{S}} \right) \right) + \frac{3}{4\pi} \ln(1 - c_{kl}c_{lk}) \ln\left(-4(s_k + s_l) \right) \\ + \frac{\mathrm{i}}{2} \ln \frac{\Gamma\left(-\frac{\ln(1 - c_{kl}c_{lk})}{2\pi \mathrm{i}} \right)}{\Gamma\left(\frac{\ln(1 - c_{kl}c_{lk})}{2\pi \mathrm{i}} \right)} + \frac{\pi}{4} \end{split}$$

with

$$\widehat{\theta}_k(z) := \mathrm{i}(-S)^{\frac{3}{2}} \left(\frac{z^3}{6} - \frac{s_k}{S} z \right).$$

Remarks

• If n = 1, we recover previous asymptotic formulas.

Remarks

- If n = 1, we recover previous asymptotic formulas.
- If n > 1, special features of β_1 .
 - $(\beta_1)_{kl}$ corresponds to either an extension of the Hastings-McLeod solution or an extension of the Ablowitz–Segur solution for the Painlevé II equation, depending on the value of the product $c_{kl}c_{lk}$.
 - Asymptotic behavior of $(\beta_1)_{kl}$ as $S \to -\infty$ cannot be deduced solely from its behavior as $S \to +\infty$ in the Ablowitz–Segur case.

Open problem

• Large negative S asymptotics of β_1 for general C.

Open problem

- Large negative S asymptotics of β_1 for general C.
- If C is a 2×2 Hermitian matrix with eigenvalues in (-1,1), Painlevé V asymptotics in a different asymptotic regime.

[Du-Xu-Zhao, '25]

About the proofs

A Fredholm determinant representation of β_1

Let $\mathcal{A}_{\vec{s}}$ be a matrix version of the Airy-convolution operator acting on $L^2(\mathbb{R}_+,\mathbb{C}^n)$ defined by

$$\left(\mathcal{A}\vec{i}_{\vec{s}}\vec{f}\right)(x) := \int_{\mathbb{R}_+} \mathbf{A}\mathbf{i}(x+y;\vec{s})\vec{f}(y)dy$$

with $\vec{f} := (f_1, \cdots, f_n)^T$ and

$$\operatorname{Ai}(x;\vec{s}) := \int_{\gamma_{+}} e^{\theta(\mu)} C e^{\theta(\mu)} e^{ix\mu} \frac{d\mu}{2\pi} = \left(c_{jk} \operatorname{Ai} \left(x + s_{j} + s_{k} \right) \right)_{j,k=1}^{n},$$

$$heta(\mu):=\mathrm{i}\,\mathsf{diag}\left(rac{\mu^3}{6}+s_1\mu,rac{\mu^3}{6}+s_2\mu,\ldots,rac{\mu^3}{6}+s_n\mu
ight).$$

A Fredholm determinant representation of β_1

A noncommutative (matrix) version of the Tracy-Widom distribution:

$$\det\left(\mathit{I}-\mathcal{A}ec{\emph{r}_{ec{s}}^{2}}
ight)=\exp\left(-4\int_{s}^{\infty}(t-s)\operatorname{Tr}\left(eta_{1}(t+ec{\delta})^{2}
ight)dt
ight).$$

[Bertola-Cafasso, '12]

(1)
$$\Xi(\lambda) := \Xi(\lambda; \vec{s}, C)$$
 is defined and analytic in $\mathbb{C} \setminus (\gamma_+ \cup \gamma_-)$.

Figure 1: The jump contours γ_+ and γ_- in the RH problem for Ξ .

(b) For $\lambda \in \gamma_+ \cup \gamma_-$, we have

$$\Xi_{+}(\lambda) = \Xi_{-}(\lambda) \begin{pmatrix} I_{n} & e^{\theta(\lambda)} C e^{\theta(\lambda)} \chi_{\gamma_{+}} \\ e^{-\theta(\lambda)} C e^{-\theta(\lambda)} \chi_{\gamma_{-}} & I_{n} \end{pmatrix}.$$

(c) As $\lambda \to \infty$ with $\lambda \in \mathbb{C} \setminus (\gamma_+ \cup \gamma_-)$, we have

$$\Xi(\lambda) = I_{2n} + \frac{\Xi_1}{\lambda} + \mathcal{O}(\lambda^{-2}),$$

where Ξ_1 is independent of λ .

The connection between β_1 and Ξ :

$$\beta_1(\vec{s}) = -i \lim_{\lambda \to \infty} \lambda [\Xi]_{12} (\lambda; \vec{s}).$$

[Bertola-Cafasso, '12]

The connection between β_1 and Ξ :

$$\beta_1(\vec{s}) = -i \lim_{\lambda \to \infty} \lambda [\Xi]_{12} (\lambda; \vec{s}).$$

[Bertola-Cafasso, '12]

Asymptotic analysis of Ξ for large S:

- S > 0: straightforward.
- S < 0: significant obstacles.

The connection between β_1 and Ξ :

$$\beta_1(\vec{s}) = -i \lim_{\lambda \to \infty} \lambda [\Xi]_{12} (\lambda; \vec{s}).$$

[Bertola-Cafasso, '12]

Asymptotic analysis of Ξ for large S:

- S > 0: straightforward.
- S < 0: significant obstacles.

A key observation: the structures of C allow us to decompose the original RH problem into two RH problems by introducing proper index sets associated with the permutation matrix P.

Rescaling and decomposition of Ξ

Rescaling:

$$\Psi(z) = \Xi(\sqrt{-S}z)e^{\widehat{\theta}(z)\otimes\sigma_3},$$

$$\widehat{\theta}(z) := \mathrm{i}(-S)^{\frac{3}{2}} \left[\frac{1}{6} z^3 I_n - \frac{z}{S} \mathbf{s} \right].$$

Rescaling and decomposition of $\boldsymbol{\Xi}$

Rescaling:

$$\Psi(z) = \Xi(\sqrt{-S}z)e^{\widehat{\theta}(z)\otimes\sigma_3},$$

where

$$\widehat{\theta}(z) := \mathrm{i}(-S)^{\frac{3}{2}} \left[\frac{1}{6} z^3 I_n - \frac{z}{S} \mathbf{s} \right].$$

• Two index sets: recall that $C = \Lambda P$, where $\Lambda = \operatorname{diag}(\mu_1, \dots, \mu_n)$ and P is a permutation matrix such that C^2 is a diagonal matrix. Thus,

$$P = \sum_{i=1}^{n} E_{i\sigma(i)}, \qquad \sigma^{2} = id.$$

The decomposition of Ψ

• Two index sets: recall the permutation σ associated with P, we set

$$\mathcal{I} := \{i : c_{i\sigma(i)}c_{\sigma(i)i} = 1\}, \qquad \mathcal{J} = \{1,\ldots,n\} \setminus \mathcal{I}.$$

The decomposition of Ψ

• Two index sets: recall the permutation σ associated with P, we set

$$\mathcal{I} := \{i : c_{i\sigma(i)}c_{\sigma(i)i} = 1\}, \qquad \mathcal{J} = \{1,\ldots,n\} \setminus \mathcal{I}.$$

• The decomposition:

$$\Psi(z) = \Psi_{\mathcal{I}}(z) \begin{pmatrix} \sum_{i \in \mathcal{I}} E_{ii} & 0 \\ 0 & \sum_{i \in \mathcal{I}} E_{ii} \end{pmatrix} + \Psi_{\mathcal{J}}(z) \begin{pmatrix} \sum_{j \in \mathcal{J}} E_{jj} & 0 \\ 0 & \sum_{j \in \mathcal{J}} E_{jj} \end{pmatrix},$$

$$\Psi_{\mathcal{I}}(z) := \Psi(z) \begin{pmatrix} \sum_{i \in \mathcal{I}} E_{ii} & 0 \\ 0 & \sum_{i \in \mathcal{I}} E_{ii} \end{pmatrix} + \begin{pmatrix} \sum_{j \in \mathcal{J}} E_{jj} & 0 \\ 0 & \sum_{j \in \mathcal{J}} E_{jj} \end{pmatrix},$$

$$\Psi_{\mathcal{J}}(z) := \Psi(z) \begin{pmatrix} \sum_{j \in \mathcal{J}} E_{jj} & 0 \\ 0 & \sum_{j \in \mathcal{J}} E_{jj} \end{pmatrix} + \begin{pmatrix} \sum_{i \in \mathcal{I}} E_{ii} & 0 \\ 0 & \sum_{i \in \mathcal{I}} E_{ii} \end{pmatrix}.$$

RH problem for $\Psi_{\mathcal{I}}$

- (a) $\Psi_{\mathcal{I}}(z)$ is defined and analytic in $\mathbb{C} \setminus (\gamma_+ \cup \gamma_-)$.
- (b) For $z \in \gamma_+ \cup \gamma_-$, we have

$$\Psi_{\mathcal{I},+}(z) = \Psi_{\mathcal{I},-}(z) \begin{pmatrix} I_n & \sum_{i \in \mathcal{I}} E_{ii} C \chi_{\gamma_+} \\ \sum_{i \in \mathcal{I}} E_{ii} C \chi_{\gamma_-} & I_n \end{pmatrix}.$$

(c) As $z \to \infty$ with $z \in \mathbb{C} \setminus (\gamma_+ \cup \gamma_-)$, we have

$$\Psi_{\mathcal{I}}(z) = \left(I_{2n} + \frac{\Psi_{\mathcal{I},1}}{\sqrt{-S}z} + \mathcal{O}\left(z^{-2}\right)\right) e^{\sum_{i \in \mathcal{I}} E_{ii}\widehat{\theta}(z) \otimes \sigma_3},$$

$$\Psi_{\mathcal{I},1} = \Xi_1 \begin{pmatrix} \sum_{i \in \mathcal{I}} E_{ii} & 0 \\ 0 & \sum_{i \in \mathcal{I}} E_{ii} \end{pmatrix}.$$

RH problem for $\Psi_{\mathcal{J}}$

- (a) $\Psi_{\mathcal{J}}(z)$ is defined and analytic for $z \in \mathbb{C} \setminus (\gamma_+ \cup \gamma_-)$.
- (b) For $z \in \gamma_+ \cup \gamma_-$, we have

$$\Psi_{\mathcal{J},+}(z) = \Psi_{\mathcal{J},-}(z) \begin{pmatrix} I_n & \sum_{j \in \mathcal{J}} E_{jj} C \chi_{\gamma_+} \\ \sum_{j \in \mathcal{J}} E_{jj} C \chi_{\gamma_-} & I_n \end{pmatrix}.$$

(c) As $z \to \infty$ with $z \in \mathbb{C} \setminus (\gamma_+ \cup \gamma_-)$, we have

$$\Psi_{\mathcal{J}}(z) = \left(I_{2n} + \frac{\Psi_{\mathcal{J},1}}{\sqrt{-S}z} + \mathcal{O}\left(z^{-2}\right)\right) e^{\sum_{j \in \mathcal{J}} E_{jj}\widehat{\theta}(z) \otimes \sigma_3},$$

$$\Psi_{\mathcal{J},1} = \Xi_1 egin{pmatrix} \sum_{j \in \mathcal{J}} E_{jj} & 0 \\ 0 & \sum_{j \in \mathcal{J}} E_{jj} \end{pmatrix}.$$

Asymptotic analysis of the RH problems for $\Psi_{\mathcal{I}}$ and $\Psi_{\mathcal{J}}$

- Asymptotic analysis of the RH problems for $\Psi_{\mathcal{I}}$
 - Introduction of g-function
 - Contour deformation
 - Airy parametrix

Asymptotic analysis of the RH problems for $\Psi_{\mathcal{I}}$ and $\Psi_{\mathcal{J}}$

- Asymptotic analysis of the RH problems for $\Psi_{\mathcal{I}}$
 - Introduction of g-function
 - Contour deformation
 - Airy parametrix
- Asymptotic analysis of the RH problems for $\Psi_{\mathcal{J}}$
 - Introduction of $\widetilde{\theta}$ -function
 - Contour deformation
 - Lenses opening
 - Parabolic cylinder parametrix

Thanks for your attention!

Thanks for your attention!

&

Questions?