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Introduction
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A short history of Painlevé equations

= The Painlevé equations possess the so-called Painlevé property: all its solutions
are free from movable branch points.
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A short history of Painlevé equations

= The Painlevé equations possess the so-called Painlevé property: all its solutions
are free from movable branch points.

= Discovered by Painlevé and his colleagues at the beginning of 20th century while
classifying all second-order ordinary differential equations

which possess the Painlevé property.

= The solutions of Painlevé equations are called the Painlevé transcendents.



The Painelvé Il equation

Definition:



The Painelvé Il equation

Definition:

= v = 0: homogeneous PIl equation.
= v # 0: inhomogeneous PlI equation.

= All of its solutions are meromorphic in s whose poles are simple with residues +1.



Smooth solutions

= For any k, there exists a unique solution to the homogeneous PIl equation which
behaves like
kAi(s), s — +o0.

[Hastings-McLeod, '80]



Smooth solutions

= For any k, there exists a unique solution to the homogeneous PIl equation which
behaves like
kAi(s), s — +o0.

[Hastings-McLeod, '80]

= By choosing different k, we obtain several classes of well-known solutions of the
Pll equation, which are denoted by q(s; k) in what follows.



Hastings-McLeod solutions

k = +1: Hastings-McLeod solutions



Hastings-McLeod solutions

k = +1: Hastings-McLeod solutions

= Asymptotic behaviors:

+£./=3 + O(|s|7%/?), s — —00,
o—(4/3)53/2

0 SEll)) =
q(sy ) :l:Al(S) + O <51/4> 5y S= —+00.

[Deift-Zhou, '95]



Hastings-McLeod solutions

= g(s; 1) are real and pole-free on the real axis.

[Hastings-McLeod, '80]
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Ablowitz-Segur solutions

—1 < k < 1: Ablowitz-Segur solutions



Ablowitz-Segur solutions

—1 < k < 1: Ablowitz-Segur solutions

= Asymptotic behaviors:

(ﬁ cos (2(—s)*2 + x log(8(—s)*/?) + ¢)
In |s]|

q(s; k) = +O(‘s|5/4) , S— —00,
. o (4/3)53/2
kAi(s) + O 77 , s — 400,

where 1
m . .
X =5 log(1—K), ¢:= —g A I(ix) — arg(—ki).
[Ablowitz-Segur, '76; Segur-Ablowitz, '81]
[Hastings-McLeod, '80; Clarkson-McLeod, '88; Deift-Zhou, '95]



Extensions of Ablowitz-Segur solutions

ke C\ ((—o0, —1]U[1,00)): (complex) Ablowitz-Segur solutions

= q(s; k) is pole-free on the real line with the asymptotics

( ) (__)%;a sin (%(— )3/2 + X |n(8( )3/2) + Qb) + O (W) s — —00,
q(s; k) = /
kmm+0<$f>, 55 A

Here, x = 5 log(1 — k%) with | Im x| < % and

- w1 T(-ix)
o= 2" Ty

[Bogatskiy-Claeys-Its, '16]
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Applications: The Tracy-Widom distribution

Definition:
Fa(s; ) = det(/ — vKai),
where ICp; is the integral operator acting on L2(s, 00) with the Airy kernel

Kai(xy) = Ai(X)Ai’(y))(: 51’(X)Ai(y)7

57—1+Z / /demKAI@,f,)),,_ld& e,



Applications: The Tracy-Widom distribution

Definition:
Fa(s; ) = det(/ — vKai),
where ICp; is the integral operator acting on L2(s, 00) with the Airy kernel

Kai(xy) = Ai(X)Ai’(y))(: 51’(X)Ai(y)7

57—1+Z / /demKAI@,f,)),,_ld& e,

= F,(s;7y) gives us the celebrated Tracy-Widom distribution (v = 1) and its
deformed version (0 < vy < 1).



Applications: The Tracy-Widom distribution

Integral representations:

Fa(s;v) = exp (/:O —(x—9)d(x; ’Y)dx> = exp (— /SOO H(x; ) dX) :
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Applications: The Tracy-Widom distribution

Integral representations:

Fa(s;v) = exp (/:O —(x—9)d(x; ’Y)dx> = exp (— /SOO H(x; ) dX) :

where g satisfies Painlevé Il equation
q'(x) = xq(x) +2¢°(x),
subject to the following boundary conditions at +oc:

(x:7) Ai(x), v =1 (Hastings-McLeod solution),
i V7Ai(x), 0 < <1 (Ablowitz-Segur solution),

and H is the associated (scaled) Hamiltonian.
[Tracy-Widom, '94; Bohigas-Carvalho-Pato, '09]
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Noncommutative Painlevé Il equation

Noncommutative Painlevé Il equation:

9
D2p; = 4sB; + 4515 + 833, s :=diag(sy,. .., Sn), D::Z—, néeN,
— s

=

where 51 = 31(5) is an n X n matrix-valued function of s:= (s1,...,s,).
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Noncommutative Painlevé Il equation

Noncommutative Painlevé Il equation:

9
D2p; = 4sB; + 4515 + 833, s :=diag(sy,. .., Sn), D::Z—, néeN,
— s

=

where 51 = 31(5) is an n X n matrix-valued function of s:= (s1,...,s,).

= If n=1, one has B1(s1) = v2q(2v2s1).
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Noncommutative Painlevé Il equation

Noncommutative Painlevé Il equation:

9
D2p; = 4sB; + 4515 + 833, s :=diag(sy,. .., Sn), D::Z—, néeN,
— s

=

where 51 = 31(5) is an n X n matrix-valued function of s:= (s1,...,s,).

= If n=1, one has B1(s1) = v2q(2v2s1).

= Introduced in the context of infinite Toda system.

[Retakh-Rubtsov, '10]
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Noncommutative Painlevé Il equation

Noncommutative Painlevé Il equation:
0
D2p; = 4sB; + 4515 + 8433, s:=diag(s1,...,s,), D:= Z e " eN,
=17

where 51 = [31(5) is an n x n matrix-valued function of s:= (s1,...,s,).
= Related to Tracy-Widom distribution function of the general -ensembles with the
even values of 5.

[Its-Prokhorov, '20; Rumanov, '15&'16]

= Related to the systems of Calogero type.
[Bertola-Cafasso-Rubtsov, '18]

12



A family of special solutions for the noncommutative Painlevé Il equation

Let C= (cjk) i be an arbitrary n x n constant matrix, and set

n
j7k

1 ¢ ,
S:Zn;sj’ 6,‘:251‘—5, I:].,...,n.
=

13



A family of special solutions for the noncommutative Painlevé |l equation

Let C= (cjk) i be an arbitrary n x n constant matrix, and set

n
j7k

1 ¢ ,
5::,7;5]’ 5,‘:251‘*5, I:].,...,n.
=

Theorem [Bertola-Cafasso, '12]
There exists a unique solution 51(S) = f1(S; €) of the noncommutative Painlevé Il
equation such that

3]
(B1)k = —cwiAi(sk + s1) + O <\[5eg(25255)2> G s

with [0;| < €S, where € € [0,1) is an arbitrary real number and (1) stands for the
(k, )-th entry of S;. If the singular values of C lie in [0, 1], then the associated

solution is pole free for s € R". 13



Today'’s topic

= Asymptotics of 3i(5; C) as S — —oo for a class of structured matrices C.

14



Main results




The structures of C

Assumption

We assume that C = AP, where A = diag(u1, ..., 1n) with p; € C,

\wil < 1,i=1,...,n, and Pis a permutation matrix such that C? is a diagonal
matrix.
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The structures of C

Assumption
We assume that C = AP, where A = diag(u1, ..., 1n) with p; € C,

\wil < 1,i=1,...,n, and Pis a permutation matrix such that C? is a diagonal
matrix.

Example

If n =3, C takes one of the following forms:

ur 0 0 0 0 m 0 wm O pr 0 0
0 2 0 ’ 0 2 0 ’ 12 0 0 ’ 0 0 2
0 0 us ps 0 0 0 0 pus3 0 ps O

15



Large negative S asymptotics of [3;

Theorem [Liu-Yao-Z., arXiv:2507.09472]

Under our assumption on C, we have

\/ =2+ O(S™), ckicik = 1,
(B1)u = 7(_”\_/;’)7% cos (i (5,( (W) + 8, (@)) %) cu+O(S™h, crici = 0,

(—sk — 5/)7% \/ =In(=cuer) coq W(sk, si)cu + O(S™h), Ckicik 7 0,

T CkIClk

if S— —oo and §; = €S with ¢; € (—1,1) being fixed,

16



Large negative S asymptotics of [3;

Theorem [Liu-Yao-Z., arXiv:2507.09472]

where the function (s, s/) is related to the parameters ¢y and cj through the
connection formula

(-~ ¥ - B 3
1/)(5/(, S/) =1 <0k < . 3 Sl) aF 9/ ( 3k 5 Sl)) + E In(l — Ck/C/k) In (*4(5;( + 5/))
. In(l—ck/qk)
I G

2mi

+ = 1n 52
2 r ('n(lfcklclk)> 4

27i

with
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= If n=1, we recover previous asymptotic formulas.
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= If n=1, we recover previous asymptotic formulas.

= If n> 1, special features of ;.
= (31)w corresponds to either an extension of the Hastings-McLeod solution or an
extension of the Ablowitz—Segur solution for the Painlevé Il equation, depending on

the value of the product cy/ci.
= Asymptotic behavior of(81)x as S — —oo cannot be deduced solely from its

behavior as S — +o0 in the Ablowitz—Segur case.

18



Open problem

= Large negative S asymptotics of 31 for general C.
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Open problem

= Large negative S asymptotics of 31 for general C.

= If Cis a2 x 2 Hermitian matrix with eigenvalues in (—1,1), Painlevé V
asymptotics in a different asymptotic regime.

[Du-Xu-Zhao, '25]
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About the proofs




A Fredholm determinant representation of [;

Let Aiz be a matrix version of the Airy-convolution operator acting on L2 (R, ,C")
defined by

(i) (9 = [ AiGe-+ v 9y
+
with f:= (f,--- , )" and

i )
Ai(x; s) := eP(1) Ceflh) i L (i Ai (x+ sj + sk))
T 2r

n
J k=1’

where

3 3 3
O(n) :=idiag (’Lé + s1u, % + szu,...,% + s,,,u> .

20



A Fredholm determinant representation of [;

A noncommutative (matrix) version of the Tracy-Widom distribution:

det (I — A&) = exp <—4/:O(t— s)Tr (ﬁl(t+ 5)2> dt) :

[Bertola-Cafasso, '12]
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A Riemann-Hilbert (RH) characterization of (;

(1) =(N) :==(\; s, €) is defined and analytic in C\ (y4+ U~-).
Y+ T+

V- V-

Figure 1: The jump contours v, and v_ in the RH problem for =.
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A Riemann-Hilbert (RH) characterization of (;

(b) For A € v4+ U~_, we have

/ SO N
= N)==_(1 " B
+( ) ( ) (eg()\)ceg()\) Xo_ In

(¢) As A = oo with A € C\ (74 U~-), we have

=(A) = b + % + 02,

where =7 is independent of A.

23



A Riemann-Hilbert (RH) characterization of (;

The connection between 31 and =:
B1(3) = —i lim A[S], (X:9).
A—00

[Bertola-Cafasso, '12]
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A Riemann-Hilbert (RH) characterization of (;

The connection between 31 and =:
B1(3) = —i lim A[S], (X:9).
A—00
[Bertola-Cafasso, '12]

Asymptotic analysis of = for large S:

= S > 0: straightforward.
= S < 0: significant obstacles.
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A Riemann-Hilbert (RH) characterization of (;

The connection between 31 and =:
B1(3) = —i lim A[S], (X:9).
A—00
[Bertola-Cafasso, '12]

Asymptotic analysis of = for large S:

= S > 0: straightforward.
= S < 0: significant obstacles.

A key observation: the structures of C allow us to decompose the original RH
problem into two RH problems by introducing proper index sets associated with the
permutation matrix P.

24



Rescaling and decomposition of =

= Rescaling:

V(z) = =(V=52)dD®7s,

where
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Rescaling and decomposition of =

= Rescaling:

V(z) = =(V=52)dD®7s,

where

= Two index sets: recall that C = AP, where A = diag(u1,...,un) and Pis a
permutation matrix such that C? is a diagonal matrix. Thus,

_ A 9
P = Z Eio(i)7 g = ld.
i=1

25



The decomposition of V¥

= Two index sets: recall the permutation ¢ associated with P, we set

Z:={i:c (i)Cg(i)izl}, J=A11,....,n}\ Z.

26



The decomposition of V¥

= Two index sets: recall the permutation ¢ associated with P, we set

I := {I Cio (i) Co(i)i = 1}, j:{l”n}\z

= The decomposition:

V(@) = V() (ZH S ) V(2 (Zﬁf S E.,) ,

0 ZiEZ Eij jeg =i

where

- 2 ez Ei . 2jes i °
A= ( OI Diez En‘) ’ ( 67 i 2jeg Eff) |

W (2) = W(2) (Zjeg Ejj - 0 E..) 4 (Z;GOI Ei Z-OI E,-,-) .

jegJ =
26



RH problem for V;

(a) Wz(z) is defined and analytic in C\ (v4 U~-).
(b) For z€ vy Uv_, we have

I > ez EiC X7+>

|\ =VYs_
z+(2) z-(2) <Zi€I EiiCxy_ i

(¢) As z— oo with z€ C\ (74 U~_), we have

WI(Z) = <I2n + O ( )> eZiEI Eiié\(z)®037

vz
\/72

— p E,',' 0
Vz1==1 2ier -
0 ZIEI Eii

where

27



RH problem for V ;

(a) W7(2) is defined and analytic for z€ C\ (74 U~v-).
(b) For z€ vy Uv_, we have

I i« 7 EjiC
Vs (2)=Vs_(2) < " > jes Ei X%) .

ZjEJ EJ'J'CX’Yf In

(¢) As z— oo with z€ C\ (74 U~_), we have

U .
Vy(2) = (IZn + \/—i;z + O (2_2)> e EJJQ(Z)®03’

where

, E:: 0
V=2 (ZJEJ jj ) .
0 Zjej EJ'J'

28



Asymptotic analysis of the RH problems for V7 and V ;

= Asymptotic analysis of the RH problems for W7

= Introduction of g-function
= Contour deformation
= Airy parametrix

29



Asymptotic analysis of the RH problems for V7 and V ;

= Asymptotic analysis of the RH problems for W7
= Introduction of g-function
= Contour deformation
= Airy parametrix

= Asymptotic analysis of the RH problems for W 7
= Introduction of f-function
= Contour deformation
= Lenses opening
= Parabolic cylinder parametrix

29



Thanks for your attention!
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