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Elliptic Ginibre Ensembles with a Point Charge



Logarithmic Potential Theory

= 2D Log-gas Ensemble For z = (z)}, € C"

Hy(z)= > Io| _zk| 22\/\/4

1<j<k<N

where W(z) — log(1 + |z]*) — oo.
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1 .
N Zézj — dpw = argmin lw(u)
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Logarithmic Potential Theory

= 2D Log-gas Ensemble For z = (z)}, € C"
H = | Ww(
N(z) Z og | _ zk| 2 Z Zj
1<j<k<N

where W(z) — log(1 + |z]*) — oo.

m (Weighted) Logarithmic Energy Functional

i) = [ / o8 - du(z) () + / W(2) du(2),

m Equilibrium Measure
L 1) dpw = in | AW -1 d2
N Z ; — duw = argmin Iy (p) = Sy —>

lleell=1

where A = 98, and Sy C C is called droplet.
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Equilibrium Measure Problem

Ginibre UE Spherical UE Truncated UE

W(z) = |2 W(z)=p tlog(l +z")  W(z)=p "log(l - |2[*)
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Equilibrium Measure Problem

m 2D Equilibrium Measure Problems
— Ginibre Unitary Ensemble + Point Charges
[Balogh—Bertola—Lee—McLaughlin '15], [Kieburg—Kuijlaars—Lahiry '25]
— Spherical Unitary Ensemble + Point Charges

[Brauchart-Dragnev—Saff~-Womersley '18], [Legg—Dragnev '21],
[Kuijlaars—del Rey '22], [Byun—Forrester—Lahiry '25]
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[Balogh—Merzi '15], [Bleher—Kuijlaars '12], [Kuijlaars—del Rey '22]
— Non-Hermitian Marchenko—Pastur Law (chiral Ginibre)
[Akemann—-Byun—Kang '21]

m Other Perspectives
— Riesz Gases
[Agarwal-Dhar—Mulkarni-Kundu—Majumdar—Mukamel-Schehr '19]
— Anisotropic Coulomb Interaction
[Carrillo-Mateu—Mora—Rondi—Scardia—Verdera '19]

— Random Matrices with Additive External Source
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Elliptic Ginibre Ensemble

m Elliptic Ginibre Matrix

Vit Vit
2 2

where 7 € [0,1] and G = Ginibre.

X, =

(G+G") +

(G-G)
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Elliptic Ginibre Ensemble

m Elliptic Ginibre Matrix
v 12+ T(G+G*) 4 12_ T(G-G")
where 7 € [0,1] and G = Ginibre.

X, =

m External Potential

We(z) := _17_2 (\z|2 -7 RezZ)
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Elliptic Ginibre Ensemble

m Elliptic Ginibre Matrix

Vit Vit
2 2

where 7 € [0,1] and G = Ginibre.

X, = (G+G*) + (G-G")

m External Potential
1

e . 2 2
We(z) .—1_7_2(\z| —TREZ)
B X2 y2
147 1—7
m Limiting Spectrum The(fll_lp(t)lg)Law
7T=0 Circular Law

7€ (0,1) Elliptic Law
T=1 Semicircle Law
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Elliptic Ginibre Ensemble with a Point Charge Insertion

m Conditional Elliptic Ginibre Matrix
elliptic Ginibre matrix with non-Hermiticity parameter 7 € [0, 1]
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m Conditional Elliptic Ginibre Matrix
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Elliptic Ginibre Ensemble with a Point Charge Insertion

m Conditional Elliptic Ginibre Matrix
elliptic Ginibre matrix with non-Hermiticity parameter 7 € [0, 1]
of size (¢ + 1)N x (c + 1) N, conditioned to have deterministic
eigenvalue p with multiplicity c/V.

N
1 2 2cN _—NWE(z) d22j
dPn(2) = —— |z — zk| lzi —p|™ e P —=
ZON I rr
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Elliptic Ginibre Ensemble with a Point Charge Insertion

m Conditional Elliptic Ginibre Matrix
elliptic Ginibre matrix with non-Hermiticity parameter 7 € [0, 1]
of size (¢ + 1)N x (c + 1) N, conditioned to have deterministic
eigenvalue p with multiplicity c/V.

ZN(Q) s

N
1 N ) d%z;
dPn(z) = 5—~5 | | lzj — zi| | | |z — pPNe VW) © &
1<j<k<N j=1

m External Potential

Q(z) = We(z) + 2clog

lz—pl
1 ) ) 1
= —7R 2clog ——
1_7_2(|z| 7Rez") + 2clog Z= 7

= elliptic potential + point charge insertion
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1
1-72

1
(|z]* — 7 Re z%) + 2clog 7l
7 —

Q(z) =

Main Goal
For the external potential Q, what is the droplet S = Sq?
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1
1-72

(|z\2 -7 Rez2) + 2clog ﬁ

Q(z) =

Main Goal
For the external potential Q, what is the droplet S = Sq?

m Equilibrium Measure

d’z 1

2
dpo = AQ L5 == =~y Isgd'z

m Parameters
- : position of the point charge insertion
— ¢ > 0: electrostatic charge

— 7 € [0,1]: non-Hermiticity parameter
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Previous Results

m 7 = 0 [Balogh-Bertola—Lee-McLaughlin '15]

[ ] [Byun '24]
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Regimes of Parameters
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Regimes of Parameters

m Regime |

1—7
and 0<c< Cy

-
or
_ 3
and 0<c< u
27(3 4 72)

= Regime Il

(a 1) k(1 —a?)?(1—71a%)+a%k
c=c(a,k) = = ,
a2 (1—a2)2(1 — 12+ 27kK) — K2

Here, a € (0,1) and k € [0, keri) Where ke is the unique zero of H(a,-).

= Regime |1l Corresponds to (p, ¢, 7) lying outside Regime | and II.
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The Phase Diagrams

(@) 7=0 (b) 7=0.3

(c) 7=0.6
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Topological Characterization of the Droplet

Theorem 1 (Byun-Y. ’25)

The droplet S associated with Q is doubly connected, simply connected, or
composed of two disjoint simply connected components.
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Phase Diagrams Revisited

(@) 7=0 (b) 7=0.3

(c) 7=0.6

12/29



Droplet and Energy: Doubly Connected Case

Theorem 2 (Byun-Y. ’25)
Suppose (p, c,7) € Regime |. Then S = E N D where

E={(£=)"+ (=) <1+c) D={x-pr+rr<ca-m}.

1+7 1—71
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Theorem 2 (Byun-Y. ’25)
Suppose (p, c,7) € Regime |. Then S = E N D where

E={(£=)"+ (=) <1+c) D={x-pr+rr<ca-m}.

1+7 1—71
The weighted logarithmic energy is given by lq(1q) = Za(p, ¢, T) where

3 3¢ cp? @ il @)
Id(p,c,r)::z-i-?—1+T+7Iog(c(1—72))—( - ) log(1 + c).
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Droplet and Energy: Doubly Connected Case

Theorem 2 (Byun-Y. ’25)
Suppose (p, c,7) € Regime |. Then S = E N D where

E_{(I—T-T)2+(1i7—)2él+c}’ D:{(X—P)2+y2<c(1—72)}.

The weighted logarithmic energy is given by lq(1q) = Za(p, ¢, T) where

3 & (1+c)?
Ta(p,c,7)i= = + — — = | 1-72)) — log(1 :
aper)i= 3+ 5 - L 1 Siog (e - ) - EE L ogl1 +)

Remark.

— Regime | & D C E.
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Droplet and Energy: Simply Connected Case

Theorem 3 (Byun-Y. ’25)

Suppose (p, c,7) € Regime Il. Then S is closure of the interior of the
Jordan curve f(0D) where

f(z):R(z+27LfL>.

z—a a(l-7)

Here, R > 0,a € (0,1), s € [0, keri) are solution of coupled algebraic
equations.
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Droplet and Energy: Simply Connected Case

Theorem 3 (Byun-Y. ’25)

Suppose (p, c,7) € Regime Il. Then S is closure of the interior of the
Jordan curve f(0D) where

T K K
fz)=R(z+ 1 - L __£ )
(2) (Z+z Z—a 3(177))
Here, R > 0,a € (0,1), s € [0, keri) are solution of coupled algebraic
equations.

The weighted logarithmic energy is given by lo(rne) = Zs(p, ¢, T) where

3 3c z:p2

Zs(p, ¢, T) == R g
N R3kp(2 — 322 — 372% + 27a%) (1 2 —3a% +37a® —27a* & )
P
2(1 — 72)2a3 2 —3a2 — 3722+ 27a* 1 — a2
c(1 — 7)1 — a%)
Rk

+2c(1+c)|oga+c2|og( ) —(1+c)2|ogR.
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Jordan curve f(0D) where

T K K
fz)=R(z+ 1 - L __£ )
(2) (Z+z Z—a 3(177))
Here, R > 0,a € (0,1), s € [0, keri) are solution of coupled algebraic
equations.

The weighted logarithmic energy is given by lo(rne) = Zs(p, ¢, T) where

3 3c z:p2
Is(p, ¢, T) == TS ppe
N R3kp(2 — 322 — 372% + 27a%) (1 2 —3a% +37a® —27a* & )
S
2(1 — 72)2a3 2 —3a2 — 3722+ 27a* 1 — a2
c(1 — 7)1 — a%)
Rk

+2c(1+c)|oga+c2|og( ) —(1+c)2|ogR.

m Moments of Characteristic Polynomials
[Webb-Wong '19], [Deafio—-Simm '22], [Byun—Seo—Yang '25],
[Deafio-McLaughlin-Molag—Simm ’'25], [Byun—Forrester—Lahiry '25]
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Numerical Results and Fekete Points

m Fekete Points Minimizing configuration of Hamiltonian Hy

doubly connected

two simply connected components

simply connected

Fekete Points for c =0.4,7 = 0.5
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The Number of Phases and Duality

Recall that

+ SrUE,

W(z) = p ‘log(l+|z>), where +=
(z) =p "log(l+|z]"), wher {_ TTUE,

W(z) = T (|z]* = 7Rez%), for elliptic GinUE.
-7
GinUE ‘ SrUE ‘ TrUE ‘ elliptic GinUE
+ point charge insertion
7+ of parameters 2 | 3
7+ of topological phases 2 ‘ 3
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The Number of Phases and Duality

Recall that

+ SrUE,

W(z) = p ‘log(l+|z>), where +=
(z) =p "log(l+|z]"), wher {_ TTUE,

W(z) = T (|z]* = 7Rez%), for elliptic GinUE.
-7
GinUE ‘ SrUE ‘ TrUE ‘ elliptic GinUE
+ point charge insertion
7+ of parameters 2 | 3
7+ of topological phases 2 ‘ 3

Remark. Dualities in Random Matrix Theory [Forrester '25]
- GinUE < LUE
— SrUE, TrUE «+ JUE
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Critical Regimes

— T —
0s - T - o5 // — - 05 — = -
(a) Regime I N 1l (b) Regime I N 111 (c) Triple Point

m Regime | N II: single tangent point.
m Regime | N Ill: two tangent points.
m Regime Il N Ill: 2D birth of a cut.

m Triple Point: single tangent point + identical curvature.

(1—7)°
27(3 4+ 712)’

Ctri =
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Sketch of Proof




QOutline of the Proof

m Connectivity Bound

— Quadrature Domain (QD) theory
— Lee—Makarov theorem [Lee-Makarov '16]
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QOutline of the Proof

m Connectivity Bound

— Quadrature Domain (QD) theory
— Lee—Makarov theorem [Lee-Makarov '16]

m Doubly Connected < Regime |

— [=] conformal mapping method
— [«=] variational conditions (proven in [Byun '24])

m Simply Connected < Regime ||

— [=] conformal mapping method
— [«=] variational conditions

m Two Simply Connected Components < Regime Ill
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Lee—Makarov Theorem and Conformal Mapping Method

Lee—Makarov, Topology of quadrature domains, J. Amer. Math. Soc. 29 (2016), 333-369.

Lee—Makarov, Sharpness of connectivity bounds for quadrature domains, arXiv:1411.3415.

m Droplets and Quadrature Domain
for external potential with AW = const,

(Droplet S)° = U (Quadrature Domain ;)

j=1
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m Droplets and Quadrature Domain
for external potential with AW = const,

(Droplet S)° = (Quadrature Domain ;)

-

Il
-

J

m Connectivity Bound

d=0 d=2
® oo
d=1
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Lee—Makarov Theorem and Conformal Mapping Method

Lee—Makarov, Topology of quadrature domains, J. Amer. Math. Soc. 29 (2016), 333-369.

Lee—Makarov, Sharpness of connectivity bounds for quadrature domains, arXiv:1411.3415.

m Droplets and Quadrature Domain
for external potential with AW = const,

(Droplet S)° = U (Quadrature Domain ;)

j=1

m Conformal Mapping Method

Fact. [Aharonov-Shapiro '76]

Q is a simply connected QD < Q has a rational Riemann map
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Variational Conditions

For (p, ¢, T) fixed, Assume that the droplet is simply connected...
m Ansatz

_ 1 )
f:D°—> Q=K duxk=——">51kd
” G r(1-72) " ‘

where K is the candidate for the true droplet S.
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Variational Conditions

For (p, ¢, T) fixed, Assume that the droplet is simply connected...
m Ansatz

™ C c 1 2
f:D Q=K dpuyk = ——<1
— R K 71_(1_7_2) kd“z

where K is the candidate for the true droplet S.
m Euler—Lagrange Conditions

=/ zeK,

i ;(t w 1 z
uK(z)-*/C'°g|z—w| fo )+2Q(){>f z¢ K.

Remark.

— Equality condition < QD condition
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Ongoing Projects




Multi-Component Droplets

m Single-Component vs Multi-Component Droplets
— Asmyptotics of Orthogonal Polynomials [Hedenmalm—Wennman '21]
— Free Energy Expansion [Zabrodin—Wiegmann '06], [Byun '25]
— Quadrature Domain [Aharonov—Shapiro '76]

22/29



Multi-Component Droplets

m Single-Component vs Multi-Component Droplets
— Asmyptotics of Orthogonal Polynomials [Hedenmalm—Wennman '21]
— Free Energy Expansion [Zabrodin—Wiegmann '06], [Byun '25]
— Quadrature Domain [Aharonov—Shapiro '76]

m Multi-Components with (discrete) Rotational Symmetry
— Radial Symmetry [Ameur—Charlier—Cronvall '22, '23]
— Discrete Rotational Symmetry [Balogh—Merzi '15], [Byun '24]

[Byun '24]
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m Single-Component vs Multi-Component Droplets
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— Quadrature Domain [Aharonov—Shapiro '76]

m Multi-Components with (discrete) Rotational Symmetry
— Radial Symmetry [Ameur—Charlier—Cronvall '22, '23]
— Discrete Rotational Symmetry [Balogh—Merzi '15], [Byun '24]

[Byun '24] [Byun-Y. '25]
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Two Components Case

(Joint work with S.=S. Byun and S.-Y. Lee)

m Ansatz f : U — S where
f(z) = a({(z—20) = 7¢(z+20) — (1= 7)¢(z + 7)) + 3

where ( is the Weierstrass elliptic function of periods 2, 2w.
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Two Components Case

(Joint work with S.=S. Byun and S.-Y. Lee)

m Ansatz f : U — S where

f(2) = a(¢(z — ) = 7¢(z + 20) = (1= 7)¢(z + 7)) + 5

where ( is the Weierstrass elliptic function of periods 2, 2w.

)

“+w

* D
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Two Critical Cases

m Critical Cases

— Two Components — Doubly Connected when |w| — oo
— Two Components — Simply Connected when |w| — 0
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Two Critical Cases

m Critical Cases

— Two Components — Doubly Connected when |w| — oo
— Two Components — Simply Connected when |w| — 0

<) Ja rga Op

(a) w| =0.8 (b) |w| =15 (c) |w| =25
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Two Critical Cases

m Critical Cases

— Two Components — Doubly Connected when |w| — oo
— Two Components — Simply Connected when |w| — 0

-0

K local minimum
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Riemann—Hilbert Problem

(Joint work with S.—S. Byun, S.-Y. Lee, and M. Yang)

1
Q(Z) = $(|z|2 — TReZ2) + 2C|Og m

m Planar Orthogonality

/ Pon(2)Pmn(z)e ") &’z = hudim
C
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Riemann—Hilbert Problem

(Joint work with S.—S. Byun, S.-Y. Lee, and M. Yang)

1 ) ) 1
Q(z)—1_72(|z| 7Rez") 4 2clog Z =7

m Planar Orthogonality

/ Pon(2)Pmn(z)e ") &’z = hudim
C

m Contour Orthogonality

/ Pon(X)wmn(x)dx =0, m=0,...,N—1,
R

wm,n(x) = (x — P)CNDm+cN( ﬁ(x - TP)) exp (

47(1—72)

N(x—1p)*

Nx? )
2r )’

where D, (z) is the parabolic cylinder function (Weber—Hermite function).

Remark. Planar Orthogonality of Hermite Polynomials [van Eijndhoven—Meyers '90]
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(a)p=0 (b) p=+/7 <032

() p=+7T+(1+7)/2x0.87 dyp=1+7

Zeros of Py for N =30,cN = 1,7 =0.1.
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Riemann—Hilbert Problem

m Type Il Multiple Orthogonality

/P,,,N(x)xjw,-(x)dx:o, j=0,...,m—1, i=1,2
R

w(x) = @t | (), W) = @ s (), m= [T ) m = 2,
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Riemann—Hilbert Problem

m Type Il Multiple Orthogonality

/P,,,N(x)xjw,-(x)dx:o, j=0,...,m—1, i=1,2
R

wi(x) = wL"T_lJ’N(XL wa(x) = WL%J,N(X)i m= > Jym = LEJ-
m Type | Multiple Orthogonality for cN = integer,

N(x—7p)?

X2 —
/ (Pan()(x — 2)™Me 5 4 Qualx)e 0= )x™ dx =0,
R

deg Qpn < cN—-1, m=0,...,n4+cN—1.
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Riemann—Hilbert Problem

m Type Il Multiple Orthogonality

/PH,N(X)XJ'W,-(X)dx=o, j=0,....,m—1, i=1,2,
R

wi(x) = wL"T_lJ’N(XL wa(x) = WL%J,N(X)i m= > Jym = LEJ-
m Type | Multiple Orthogonality for cN = integer,

N(x—7p)?

X2 —
/ (P,,,N(x)(x - a)CNe_% + Qnn(x)e =7 )Xm dx =0,
R

deg Qpn < cN—-1, m=0,...,n4+cN—1.

m Future Directions

— Correlation Kernel at the Point of Small Insertion
[Akemann et al. '97], [Kuijlaars—Vanlessen '03], [Lee-Yang '17]

— Triple Criticality (Painlevé Hierarchy)
[Kriiger—Lee—Yang '25]

— Free Energy Expansion (Oscillatory Behavior)
[Ameur—Charlier-Cronvall '23], [Byun '25]
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m Droplets for elliptic Ginibre ensembles with a point charge are:

— Doubly Connected < Regime |
— Simply Connected < Regime Il
— Two Components < Regime Il

m Quadrature Domain Theory and Variational Conditions

Description of Two Component Droplet by Elliptic Functions

m Formulation of the corresponding Riemann—Hilbert Problem
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Quadrature Domain

m Quadrature Domain Domain Q is a QD if the quadrature identity

n

/Qf(g)d:f =Y af™(a) = % /Zm F(O)ra(¢) d¢

k=1
holds for all integrable analytic f on . Here

n

ckmk!
00 = 2 gy

k=1
is called the quadrature function of Q.

m Order of a QD Q :=degrg
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Quadrature Domain

m Quadrature Domain Domain Q is a QD if the quadrature identity

n

/Qf(g)% =Y af™(a) = % /Zm F(O)ra(¢) d¢

k=1
holds for all integrable analytic f on . Here

n

ckmk!
00 = 2 gy

k=1
is called the quadrature function of Q.

m Order of a QD Q :=degrg

m Mean Value Property of D C QD

' d¢ 1 1
f(O)— = f(0) = — f(¢)= d¢.
/D ) - (0) 27”/61[) (OC ¢
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Topology of QD

m Algebraic Hele-Shaw Potentials

%W(C) = ‘4‘2 — H(¢), h(¢) =0H(C) : rational in (.

Theorem 4 (Lee—Makarov)
Let S = Sw be the droplet respect to an algebraic Hele—-Shaw potential W .
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Topology of QD
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Topology of QD

m Algebraic Hele-Shaw Potentials

1 . .
W) =[P = H(Q),  h(¢) = DH(C) : rational in C.
Theorem 4 (Lee—Makarov)

Let S = Sw be the droplet respect to an algebraic Hele-Shaw potential W .
Then C\ S is a finite union of disjoint QDs, whose quadrature functions
sum up to h.

Let d be the degree of h and q; be the number of QDs with connectivity
j>1. Then

#(ovals) + Goad + 4(q — q1) < 2d + 2,

where q = Zj qj, and Qodd = Zj:odd q;-

In particular, above connectivity bound is sharp.

Lee—Makarov, Topology of quadrature domains, J. Amer. Math. Soc. 29 (2016), 333-369.

Lee—Makarov, Sharpness of connectivity bounds for quadrature domains , arXiv:1411.3415.
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Droplets and Quadrature Domains

m Elliptic Ginibre Ensemble with Point Charge Insertion
(1-7)Q(¢) = [¢]* = TRe¢® —2¢(1 — 7%) log [¢ — pl,

e ca=7)
h(¢) =1¢+ -
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Droplets and Quadrature Domains

m Elliptic Ginibre Ensemble with Point Charge Insertion
(1-7)Q(¢) = [¢]* = TRe¢® —2¢(1 — 7%) log [¢ — pl,

. C(17T2)
h(¢) = C+7C_p

— Doubly Connected Case
1—17? .
ra, (¢) = 7¢, fQZ(C):%, QUQQ=S

— Simply Connected Case/Two Component Case

ra(¢) = h(¢), Q= S° = Simply/Doubly Connected
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Conformal Mapping Method

If Q is a quadrature domain then
{=rm(Q) + Cac(¢), €09

where Cqc is the Cauchy transform respect to Lo d*¢/.
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Conformal Mapping Method

If Q is a quadrature domain then
{=rm(Q) + Cac(¢), €09

where Cqc is the Cauchy transform respect to Lo d*¢/.

Fact. [Aharonov-Shapiro '76]

Q is a simply connected QD < Q has a rational Riemann map

For a simply connected (2,

f(1/z) = ro(f(2)) + Cac(f(2)), f:D° — Q rational, conformal
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Application: Moments of the Characteristic Polynomials

Corollary 5 (Byun-Y. ’25)

Let X = X, be elliptic Ginibre matrices of size N x N.
Let ¢ >0, 7 € [0,1), be fixed.
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Application: Moments of the Characteristic Polynomials

Corollary 5 (Byun-Y. ’25)

Let X = X, be elliptic Ginibre matrices of size N x N.
Letc >0, 7 €]0,1), be fixed. Then as N — oo,

2eN KKN? + Ey,  for the complex case
IogEHdet(X— ) } =
2KN? + Ey, for the symplectic case
where
8 —Za(z,¢,7) + 2 if ,¢,T) € Regime |,
K=—lo(nq) + 5 = ( ) d , ( ) i
4 —Ts(2z,¢,7) + 3 if ( ,¢,T) € Regime Il.
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Application: Moments of the Characteristic Polynomials

Corollary 5 (Byun-Y. ’25)

Let X = X, be elliptic Ginibre matrices of size N x N.
Letc >0, 7 €]0,1), be fixed. Then as N — oo,

log E [ ‘ det(X — 2)

ZCN} KKN? + Ey,  for the complex case
2KN? + Ey, for the symplectic case

where

if ( ,c,T) € Regime I,

K = —lo(uo) + 3 = i
Q)T g —T(z,c,7)+ 32 if ( ,¢,7) € Regime Il.

Here, the error term is given by

e {O(NI/HE) for the complex case,
N pr—

o(N?) for the symplectic case.
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Application: Moments of the Characteristic Polynomials

m Partition Function and Characteristic Polynomial
s

1

1—72

det(X — )‘2CN} = Zn(Q)/Zn(W*)

where

WE(¢) =

(ICF = 7Re¢?), Q(¢) = W*(C) — 2clog|¢ — 7.

m Free Energy Expansions
Based on

log Zy(W) = —Iw (uw)N? + o(N?),
log Zy (W) = —2Iw (uw)N? + o(N?),

The leading term K is given by

3
K= —lo(pq) + Iwe(pwe) = —lo(1Q) + 1
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Free Energy Expansion and Topology

Remark.

— Topological Dependence
The coefficient of log N term is expected to be

1_
2
1_
2

[Jancovici-Manificat—Pisani '94], [Téllez—Forrester '99], [Byun—-Kang—Seo '23]

x(Sw) for the complex case

NS

x(Sw) for the symplectic case

— Ginibre Case For 7 = O(1) or cN and |z| < 1,

2y —yN 'ysz G(1+7+N)
E[|det(G — 2)[*"] = N7V G(1+V)G(1+N)(1+0(1)).

[Webb-Wong '19], [Deafio—Simm '22], [Byun—Seo—Yang '24]

— Other Models
[Fyodorov '16], [Fyodorov—Tarnowski '21], [Kivimae '24]
[Deafio-McLaughlin-Molag—Simm '25]
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A Priori Droplet Condition

Univalence condition = QD condition

Variational conditions
Kmin O \—M Kmax

A priori droplet condition; ¢ > 0

Remark.
— Condition ¢ > 0 gives k > 0.
— Condition p > 0 gives a € (0,1).
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A Priori Droplet Condition

10 10
03 o5 0s

00 Y3 + 00 +

05 05 05

10 — L0+ —— 10 — ¢

Y15 do 05 00 os 10 15 20 25 30 215 o s oo 05 10 15 20 25 30 “1s do 05 o0 os 10 15 zo 25 30

(a) K < Kmin (b) K = Kmin (C) k=0

(d) &k = Keri (e) K = Kmax (f) £ > Kmax
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