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A short story about topology and 
matrices



A footbridge between RMT and Topology
Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

• We consider:

(r, θ) ↦ I2 + r (cos(θ) sin (θ)
sin(θ) −cos(θ))

• Two eigenvalues  , 
with a degeneracy at 

λ±(r, θ) = 1 ± r
r = 0

• In Cartesian coordinates:

• Hamiltonian for a spin in a magnetic field 
along the z-axis, intensity driven by  and 
modulated by 

r
cos(θ)

• Eigenspaces  are spanned 
by the two orthonormal vectors:

E±(θ) ∈ ℝP1

v− (θ) =
cos ( θ

2 )
sin ( θ

2 )
, v+ (θ) =

−sin ( θ
2 )

cos ( θ
2 )

.

A : ℝ+ × [0,2π) ⟶ 𝒮2(ℝ)
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• Hamiltonian for a spin in a magnetic field 
along the z-axis, intensity driven by  and 
modulated by 

r
cos(θ)

• Eigenspaces  are spanned 
by the two orthonormal vectors:

E±(θ) ∈ ℝP1

v− (θ) =
cos ( θ

2 )
sin ( θ

2 )
, v+ (θ) =

−sin ( θ
2 )

cos ( θ
2 )

.

• Something remarkable happens:

•  is -periodic, the eigenvalues 
 are also -periodic.

A(r, ⋅ ) 2π
λ±(θ) 2π

• The eigenvectors  are -periodic !v±(θ) 4π

• The non- -periodicity reflects a  
topological obstruction

2π
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A footbridge between RMT and Topology
Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

• Could we have changed the coefficients of  so that the maps  are:A θ ↦ v±(θ)
1. , … more generally speaking -periodic for  ?


2. -periodic for an arbitrary  ?


3. Aperiodic ?

6π 8π 2πn n ∈ ℕ*

T T > 0

• What if the coefficients of  were complex-valued functions ?A

6



A footbridge between RMT and Topology
Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

• A different perspective: the maps  form line bundles over θ ↦ v±(θ) S1

v+(0)

v+(π)

• The obstruction we observed before corresponds to the non-orientability of the Möbius strip

• Real line bundles over  are classified by the first Stiefel-Whitney class S1 w1(S1) ∈ H1(S1,
ℤ
2ℤ ) ≅

ℤ
2ℤ
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A footbridge between RMT and Topology
Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

• Real line bundles over  are classified by the first Stiefel-Whitney class S1 w1(S1) ∈ H1(S1,
ℤ
2ℤ ) ≅

ℤ
2ℤ

• There are only two possibilities : either  or  
it rules out -periodicity for a non-integer  and aperiodicity !

v±(θ + 2π) = v±(θ) v±(θ + 2π) = − v±(θ)
T T

• Complex line bundles over  are classified by the first Chern class S1 c1(S1) ∈ H2(S1, ℤ) ≅ {e}

• All complex line bundles over  are trivial: non-zero sections can be “gauged” by multiplication 
with a phase function to have any periodicity or to be aperiodic.

S1
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Physics motivation



Physics motivation
Disordered quantum 1D chiral systems with edges

•Goal: Classification of topological phases for 1D quantum systems in the class .  AIII

courtesy to J. Baez, 2010.

• Hamiltonian has the following form:

H (p) =
0N K (p)

K (p)* 0N

•  is the crystal momentum


•  is a  matrix with complex entries


•  classified through the winding number of 

 

p ∈ 𝕊1

K (p) N × N

H

p ↦ det (H (p))
10
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Altland-Zirnbauer classification

• Matrix representation of the  
QCD Dirac Operator at chemical 
potential  mentioned earlier 
by Jacobus

μ = 0



Physics motivation
Disordered quantum 1D chiral systems with edges

•Goal: Classification of topological phases for 1D quantum systems in the class .  AIII

• Hamiltonian has the following form:

H (p) =
0N K (p)

K (p)* 0N

•  is the crystal momentum


•  is a  matrix with complex entries


•  classified through the winding number of 

 

p ∈ 𝕊1

K (p) N × N

H

p ↦ det (H (p))

• Disordered system implies  is a random  
matrix. Set .


K (p)
𝒞 : p ↦ det (K (p))

• Mathematical quantity we study:

WindN (𝒞,0) =
1

2πi ∮𝕊1

w (p) dp

where  is the winding number density:w

w (p) =
d

dp
log (det (K (p))) =

1

det (K (p))
d
dp

det (K (p))
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Physics motivation
Disordered quantum 1D chiral systems with edges

•Goal: Classification of topological phases for 1D quantum systems in the class .  AIII

• Disordered system implies  is a random  
matrix. Set .


K (p)
𝒞 : p ↦ det (K (p))

• Mathematical quantity we study:

WindN (𝒞,0) =
1

2πi ∮𝕊1

w (p) dp

where  is the winding number density:w

w (p) =
d
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log (det (K (p))) =

1

det (K (p))
d
dp

det (K (p))

• Associated partition function:

𝒵(N)
m (p, q) = 𝔼(

m

∏
j=1

det (K (pj))
det (K (qj)) )

• Allows to recover m-point correlation functions:

C(N)
1 (p) = 𝔼 (w (p)) =

d
dq

𝒵(N)
1 (p, q)

p=q
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• Initial model considered in 2021:

K(p) = cos(p)G1 + sin(p)G2

Results:

C1(p) = 0, C2(p1, p2) = −
1 − cos(p1 − p2)2N

1 − cos(p1 − p2)2

where  are idpt drawn from G1, G2 GinUE(N)

Braun, Hahn, Waltner, Gat, Guhr,  
“Winding Number Statistics of a Parametric Chiral Unitary Random Matrix Ensemble”, 2021.
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• A recent model considered in 2023:

K(p) = a(p)G1 + b(p)G2

Results:

𝒵(N)
m (p, q) =

det ( 1

ν(pi)⊤Jν(qj)
ν(qj)

†
ν(pi)

ν(qj)
†
ν(qj)

N

)
1≤i,j≤m

det ( 1

ν(pi)⊤Jν(qj) )
1≤i,j≤m

where  are idpt drawn from , 
 are two smooth -valued functions on 
G1, G2 GinUE(N)

(a, b) ℂ S1

ν(p) = (a(p)
b(p)) ∈ ℂ2, J = ( 0 1

−1 0)
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• An extension studied in late 2023:

K(p) = a(p)G1 + b(p)G2

Results:

𝒵(N)
m (p, q) =

Pf(
̂K 1(pk, pℓ) ̂K 2(pk, qℓ)

− ̂K 2(pk, qℓ) ̂K 3(qk, qℓ))1≤k,ℓ≤m

det ( 1

iν(pk)⊤Jν(qℓ) )
1≤k,ℓ≤m

where  are idpt drawn from , 
 are two smooth -valued functions on 
G1, G2 GinOE(N)

(a, b) ℂ S1

Hahn, Kieburg, Gat, Guhr, “Winding Number Statistics for Chiral Random Matrices: Averaging 
Ratios of Parametric Determinants in the Orthogonal Case”, 2023



Physics motivation
Disordered quantum 1D chiral systems with edges

•Goal: Classification of topological phases for 1D quantum systems in the class .  AIII

• Associated partition function:

𝒵(N)
m (p, q) = 𝔼(

m

∏
k=1

det (K (pk))
det (K (qk)) )

• Allows to recover m-point correlation functions:

C(N)
1 (p) = 𝔼 (w (p)) =

d
dq

𝒵(N)
1 (p, q)

p=q

• For us today: Asymptotic expansion of

𝔼 (WindN) =
1

2πi ∮𝕊1

𝔼 (w (p)) dp

•  is a 2-matrix model:K

K (p) = a (p) K1 + b (p) K2

•  two smooth complex-valued functions on 


•  two iid random matrices w complex entries

a, b 𝕊1

K1, K2
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Physics motivation
Example of determinantal curves :  drawn from Ginibre Unitary Ensemble (GinUE)G1, G2

-1000 -500 0 500 1000

-1000

-500

0

500

1000

Re

Im
Determinantal curve θ ↦ det(cos(θ )G1 + sin(θ )G2 ) for n = 51

-6×1016 -4×1016 -2×1016 0 2×1016 4×1016 6×1016

-2×1016

-1×1016

0

1×1016

2×1016

Re

Im
Determinantal curve θ ↦ det(cos(θ )G1 + sin(θ )G2 ) for n = 51

-3×1040 -2×1040 -1×1040 0 1×1040 2×1040 3×1040
-4×1040

-2×1040

0

2×1040

4×1040

Re

ImDeterminantal curve θ ↦ det(cos(θ )G1 + sin(θ )G2 ) for n = 51N=7 N=25 N=51

𝒞 : θ ↦ det (cos (θ) G1 + sin (θ) G2)
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Physics motivation
Example of determinantal curves :  drawn from Ginibre Unitary Ensemble (GinUE)G1, G2

𝒞 : θ ↦ det (G1 + eiθG2)

-1.5×106-1.0×106 -500000 0 500000 1.0×106 1.5×106
-2.0×106

-1.5×106

-1.0×106

-500000

0

500000

1.0×106

1.5×106

Re

Im
Determinantal curve θ ↦ det(G1 + ei θ G2 ) for n = 10

-2×1047 -1×1047 0 1×1047 2×1047

-2×1047

-1×1047

0

1×1047

2×1047

Re

ImDeterminantal curve θ ↦ det(G1 + ei θ G2 ) for n = 50

-3×10109-2×10109-1×10109 0 1×101092×101093×10109

-3×10109

-2×10109

-1×10109

0

1×10109

2×10109

3×10109

Re

ImDeterminantal curve θ ↦ det(G1 + ei θ G2 ) for n = 100
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Random Matrix Theory
Pólya Ensembles of multiplicative type on GlN (ℂ)

• Key properties: 1. Isotropic eigenspectrum:


2. Parametrised by a single function (Pólya weight)  and denoted ,


3. Singular values (eigenvalues of ) forms a DPP on ,


4. Eigenvalues forms a DPP on ,


5. Closed by inversion: ,


6. Closed by product:  .

ω X ∼ PólN [ω]

XX* ℝ+

ℂ

X ∼ PólN [ω] ⇒ X−1 ∼ PólN [ω̌]
X ∼ PólN [ω1], Y ∼ PólN [ω2] ⇒ XY ∼ PólN [ω1 ⊛ ω2]

ω̌ (x) = x−(N + 1)ω ( 1
x ), (ω1 ⊛ ω2) (x) = ∫

+∞

0
ω1 ( x

y ) ω2 (y) dy
y

.

dℙ (V1MV2) = dℙ (M) where V1, V2 ∈ UN,
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Random Matrix Theory
Pólya Ensembles of multiplicative type on GlN (ℂ)

• Example: Ginibre Unitary Ensemble (GinUE)

1.  a  random matrix with iid entries


2. 


3. 


4. 


5. 


G = (Zi,j) N × N

Z1,1 ∼ 𝒩ℂ (0,1)

dℙG (M) ∝ exp (−tr (MM*)) dM

ωGin (t) = e−t

fEV (z1, …, zN) ∝ ΔN (z)
2 N

∏
k=1

e− zk
2

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Complex eigenvalues of N -1/2 G with N = 1000

Forrester & Byun, "Progress on the study of the Ginibre ensembles I: GinUE", 2023. ΔN (z)
2

= ∏
1≤i<j≤N

zj − zi
2
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Random Matrix Theory
Pólya Ensembles of multiplicative type on GlN (ℂ)

• Example: Complex Spherical Ensemble

1.  iid from GinUE of size N


2.  the generalized ratio


3. 


4. , 


5. 


G1, G2

S = G1G−1
2

dℙS (M) ∝ det (IN + MM*)−2N dM

ωSph (t) = N!(1 + t)−(N + 1) ωSph = ωGin ⊛ ω̌Gin

fEV (z1, …, zN) ∝ ΔN (z)
2 N

∏
k=1

(1 + zk
2
)−(N + 1)

Forrester & Byun, "Progress on the study of the Ginibre ensembles I: GinUE", 2023.
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-4 -2 0 2 4

-4

-2

0

2

4

Complex eigenvalues of G1 G2 -1 for N = 1000

ΔN (z)
2

= ∏
1≤i<j≤N

zj − zi
2



Random Matrix Theory
Pólya Ensembles of multiplicative type on GlN (ℂ)

30

•  is s.t  is a Pólya Frequency Function of order N : ω x ↦ ω̃ (x) = e−xω (e−x)

∀k ∈ {1,…, N} : Δk (x) Δk (y) det ( ω̃ (xi − yj)) ≥ 0.

• Continuous integrable functions in  are exactly log-concave functions.PF2

 Kieburg & Kösters, “Exact relation between singular value and eigenvalue statistics”, Random Matrices: Theory Appl., 2016.
 Förster, Kieburg & Kösters, “Polynomial ensembles and Pólya frequency functions”, J. Theor. Probab., 2020.

• Encapsulates many famous RMT ensembles : Wishart-Laguerre, Cauchy-Lorentz, 
Truncated Unitary Matrices, Muttalib-Borodin, 
Meijer-G Ensembles…
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Results
Partition function

• Partition function :

𝒵(N)
m (p, q) = 𝔼(

m

∏
j=1

det (K (pj))
det (K (qj)) )

• 1-point correlation : 

C(N)
1 (p) = 𝔼 (w (p)) =

d
dq

𝒵(N)
1 (p, q)

p=q

• Our model :  (2-matrix model)


•  and  iid with , 

K (p) = a (p) K1 + b (p) K2

K1 K2 K1 ∼ PólN [ω] a, b ∈ 𝒞2 (𝕊1, ℂ)
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• Our model :  (2-matrix model)


•  and  iid with , 

K (p) = a (p) K1 + b (p) K2

K1 K2 K1 ∼ PólN [ω] a, b ∈ 𝒞2 (𝕊1, ℂ)
• Our strategy : reduce the 2-matrix model to 1-matrix one.

𝔼(
m

∏
j=1

det (a (pj) K1 + b (pj) K2)
det (a (qj) K1 + b (qj) K2) ) = [

m

∏
i=1

b (pi)
b (qi) ]

N

𝔼(
m

∏
j=1

det (κ (pj) IN + K−1
1 K2)

det (κ (qj) IN + K−1
1 K2) )

,κ (p) =
a (p)
b (p)

K−1
1 K2 ∼ PólN [ω̌ ⊛ ω]



Results
Partition function 
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• Formula for the Partition function:

𝒵(N)
m (p, q) =

det ( Q̃ (N)
m [ω](p, q))

det (Qm (p, q))
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• Formula for the Partition function:

𝒵(N)
m (p, q) =

det ( Q̃ (N)
m [ω](p, q))

det (Qm (p, q))
where we set   and ν (p) = (

a (p)
b (p)) ∈ ℂ2, J = ( 0 1

−1 0) ΥN (z1, z2) =
N

∑
k=1

ℳ [ω̌ ⊛ ω] (k, z2
2)

ℳ [ω̌ ⊛ ω] (k) ( z1

z2 )
k

• The kernels  and  are :Qm Q̃ (N)
m [ω]

,Qm(p, q) = ( 1

ν (pk)⊤ Jν (qj) )
1≤k,j≤m

Q̃ (N)
m [ω](p, q) =

(b(pk)/b(qj))
N

ν(pk)⊤Jν(qj)
1 + (1 −

κ (qj)
κ (pk) )ΥN(κ(pk), κ(qj))

1≤k,j≤m
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• Formula for the Partition function:

𝒵(N)
m (p, q) =

det ( Q̃ (N)
m [ω](p, q))

det (Qm (p, q))
where we set   and ν (p) = (

a (p)
b (p)) ∈ ℂ2, J = ( 0 1

−1 0) ΥN (z1, z2) =
N

∑
k=1

ℳ [ω̌ ⊛ ω] (k, z2
2)

ℳ [ω̌ ⊛ ω] (k) ( z1

z2 )
k

• The kernels  and  are :Qm Q̃ (N)
m [ω]

,Qm(p, q) = ( 1

ν (pk)⊤ Jν (qj) )
1≤k,j≤m

Q̃ (N)
m [ω](p, q) =

(b(pk)/b(qj))
N

ν(pk)⊤Jν(qj)
1 + (1 −

κ (qj)
κ (pk) )ΥN(κ(pk), κ(qj))

1≤k,j≤m

ℳ [f] (z) ↦ ∫
+∞

0
tz−1f (t) dt

ℳ [f] (z, A)∫
A

0
tz−1f (t) dt

Mellin transformations



Results
Average winding number

38

• Large enough class of Pólya weight with exponential decay : , ω (t) = tδe−tγ δ > − 1, γ > 0.

𝔼 (WindN) =
N
γ ∮𝕊1

νγ (p)* ν′￼γ (p)
νγ (p)

2
dp
2πi

+
γ − 1

2 ∮𝕊1

κ′￼(p)
κ (p) [

a (p)
2γ

− b (p)
2γ

a (p)
2γ

+ b (p)
2γ ] dp

2πi
+ o (1)

where νγ (p) =
a (p)γ

b (p)γ
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Average winding number
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• Large enough class of Pólya weight with exponential decay : , ω (t) = tδe−tγ δ > − 1, γ ∈ ℕ* .

𝔼 (WindN) =
N
γ ∮𝕊1

νγ (p)* ν′￼γ (p)
νγ (p)

2
dp
2πi

+
γ − 1

2 ∮𝕊1

κ′￼(p)
κ (p) [

a (p)
2γ

− b (p)
2γ

a (p)
2γ

+ b (p)
2γ ] dp

2πi
+ o (1)

where νγ (p) =
a (p)γ

b (p)γ

Berry phase
non-Gaussian effects

Asymmetry on the parameter 
functions of the model



What’s next ?
Variance winding number
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• Pólya weights with bounded support.


• Variance of the Winding Number (work in progress)


• Central Limit Theorem for the Winding Number (work in progress)


• General -valued Random Fields on  beyond the 2-matrix model (work in progress)GinUE(N) S1

 such that:K : S1 ↦ MN(ℂ) 𝔼(K(p)i,jK(q)k,ℓ) = S(p, q)δi,kδj,ℓ

𝔼(K(p)i,jK(q)k,ℓ) = 0

• Investigating symmetry classes BDI and CII in 1D (corresponding to  and )GinOE GinSE

• Investigating Random Chern numbers in higher dimensions


