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A short story ahout topology and
matrices




A footbridge between RMT and Topology

Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

. der: A 1 R, X[0,27) — &H»(R £
We consider: + [0,27) 2( )  Hamiltonian for a spin in a magnetic field

(r,0) = L, +r (C?S(H) sin (0) ) along the z-axis, intensity driven by r and
sn(0) - —cos(0) modulated by cos(6)

« Two eigenvalues A, (r,0) =1 *r,

with a degeneracy at r = 0 . Eigenspaces E_(0) € RP! are spanned
Double cone: A+(x,y) =1 Vx> +y* by the two orthonormal vectors:
* In Cartesian coordinates:
COS (Q) —sin (ﬁ)
2 2
v_(0) = V. (0) =

n(9)] " ()




A footbridge between RMT and Topology

Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

* Hamiltonian for a spin in a magnetic field » Something remarkable happens:
along the z-axis, intensity driven by r and

modulated by cos(6)

» Eigenspaces E_(0) € RP! are spanned
by the two orthonormal vectors:

(@] [l

v () = v, () = o (%)

mn(§>



A footbridge between RMT and Topology

Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

* Hamiltonian for a spin in a magnetic field
along the z-axis, intensity driven by r and
modulated by cos(6)

» Eigenspaces E_(0) € RP! are spanned
by the two orthonormal vectors:

(@] [l

v_(0) = V. (0) = - (g)

mn(g)

 Something remarkable happens:

o A(r, - ) is 2z-periodic, the eigenvalues
A, (0) are also 2m-periodic.

* The non-2z-periodicity reflects a
topological obstruction



A footbridge between RMT and Topology

Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

 Could we have changed the coefficients of A so that the maps 6 — v, (0) are:

1. 6x;, 87... more generally speaking 2zn-periodic forn € N* ?

2. T-periodic for an arbitrary 7> 0 ?
3. Aperiodic ?

« What if the coefficients of A were complex-valued functions ?



A footbridge between RMT and Topology

Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

» A different perspective: the maps 6 — v, (6) form line bundles over § :

* The obstruction we observed before corresponds to the non-orientability of the Mobius strip

. Real line bundles over S! are classified by the first Stiefel-Whitney class wi (S hy e H! (Sl, 57

14

Z)E
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A footbridge between RMT and Topology

Based on Peter’s notes distributed at the Melbourne Uni RMT Seminar in 2022

e There are only two possibilities : either v, (0 + 27) = v, (0) or v (0 + 27n) = — v, (O)

e All complex line bundles over S are trivial: non-zero sections can be “*gauged” by multiplication
with a phase function to have any periodicity or to be aperiodic.



PIYSICS motivation




Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

Altland-Zirnbauer classification

 Hamiltonian has the following form:

Symmetry Dimension
0y K ( p) AZ T C S|1 2 3 4 5 6 7 8
H( ) _ Al 0O o Oo0|O0 Z 0 Z 0 Z 0 Z
P K( )* 0 Al o o 1|(z) o z 0 Z 0 Z 0
P N Al | 1 0 0|0 0 0 Z 0 Zy Zy Z
) 1 BDI | 1 1 1| Z 0 0 0 Z 0 Zy 7
p € S is the crystal momentum 5 | o olz z 06 0 0 z 0 z
. L . DI | -1 1 | Z, Zo Z 0 0 0 Z 0
e K (p) is a NV X N matrix with complex entries B R |
Al 1 0 0|0 Z Z Z 0 0 0 Z
. o cn| 1 -1 1|2 0 Z Z Z 0 0 0
« H classified through the winding number of clo 4 olo z 0 2 2 z o o
cll 1 1 1|0 0 2 0 Z Z Z 0

p > det (H(p))

courtesy to J. Baez, 2010.
10



Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

 Hamiltonian has the following form:

Oy K (p)

* Matrix representation of the
QCD Dirac Operator at chemical

potential 4 = 0 mentioned earlier
by Jacobus

Altland-Zirnbauer classification

Symmetry Dimension
AZ T C S 1 2 3 4 5 6 7 8
A 0 0 0 o Z o0 Z 0 Z 0 Z
Alll| 0 0 1 Zz) 0 Z 0 Z 0 Z 0
Al 1 0 0 0O 0 O Z 0 Zy Zo, Z
BDI| 1 1 Z 0 0 0 Z 0 Zo 7o
D 0 0 |Z, Z 0 0 0 Z 0 %
DIl | -1 1 7o Zo Z 0 0 O Z O
All | -1 0 0 0 Z, Z. Z 0 0 0 Z
ci| -1 -1 1 Z 0 Zo Zo Z 0 0 O
C 0 -1 0 0 Z 0 Z, Zo Z 0 O
Cl 1 -1 1 0O 0 Z 0 Z, Z, Z 0

11

courtesy to J. Baez, 2010.



Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

* Hamiltonian has the following form: . Disordered system implies K (p) is a random
matrix. Set ¢ : p — det <K )
Oy K (p) p (p)
H (p) = . » Mathematical quantity we study:
K (p) Oy

Windy (%.0) = — w (p) dp

. I, .
p € S is the crystal momentum 271 I

- K (p) s a V' X N matrix with complex entries where w is the winding number density:

« H classified through the winding number of

p > det (H (p)) v (r) = gptoe (0 (K 7)) ) =< ae (K )

12



Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

. Disordered system implies K (p) is a random * Associated partition function:
matrix. Set € : p — det (K (p)) N (K (Pj>>
zw (p.q) =

- det
 Mathematical quantity we study: (Jlj! det ( K ( ) )

Windy (%.0) = — w (p) dp

271 [« * Allows to recover m-point correlation functions:
where w is the winding number density: N d .
™ (p) =E(w(p)) =—=™ (p.q)
d
w( )=ilo <det<K( ))) = : d det(K( )) q pP=q
P dp g P 1 p

13



Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

* Associated partition function:

z (p.q) = (H

k=1 det

n det (K (py) )
(% (a)) )

* Allows to recover m-point correlation functions:

CY (p) =

= (w(p))

d
- —F
dq

™ (p.q)

P=4

14

e |nitial model considered in 2021:
K(p) = cos(p)G; + sin(p)G,

where G, G, are idpt drawn from GinUE(N)

Results:

1 — cos(p; — p,)*
1 —cos(p; — P2)2

Ci(p) =0,C(p,pr) =

Braun, Hahn, Waltner, Gat, Guhr,
“Winding Number Statistics of a Parametric Chiral Unitary Random Matrix Ensemble”, 2021.



Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

* Associated partition function: A recent model considered in 2023:
Z (p.q) =E H K(p) = a(p)G, + b(p)G,
k=1 det (K (qk) ) where G, G, are idpt drawn from GiInUE(N),

_ | | (a, b) are two smooth C-valued functions on S
* Allows to recover m-point correlation functions: T N
”(%‘) v(p:) )
T
V<qf> ”<q1'> 1<i,j<m

Results: ( 1
det -
v(pi)

d i
V) =E(vp) =g 7N pa)| | e
q det<y<p)T1 )

P=4

15



Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

* Associated partition function:

m det

(K (r))

z (p.a) =E( ||

k=1 det

(K ()

* Allows to recover m-point correlation functions:

™ (p) =E(w(p) ) =

i (N)
dg !

(p.q)

16

e A recent model considered in 2023:

K(p) = a(p)G, + b(p)G,

where G, G, are idpt drawn from GiInUE(N),
(a, b) are two smooth C-valued functions on S

Results: ( I (4) v(0) N)
det - :
(p) 0(4;) /(a) (a) I<i,j<m

Z, (p.q) =
det Tl )
(v(pi) Jv(%) L<i.i<m

Hahn, Kieburg, Gat, Guhr, “Winding Number Statistics for Chiral Random Matrices: Averaging
Ratios of Determinants with Parametric Dependence”, 2023




Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

* Associated partition function:

m_det (K (pk>)

z (p.a) =E( ||

i det (K (gz) )

* Allows to recover m-point correlation functions:

™ (p) =E(w(p) ) =

d

_— g=(N)
dq:zol <p’q)

17

e An extension studied In late 2023:

K(p) = a(p)G, + b(p)G,
where G, G, are idpt drawn from GInOE(N),
(a, b) are two smooth C-valued functions on S

Results: Pf( K (pop) K2<pk,qf>)
— Ko(Pogr)  K3(qq,) 1<k,/<m

det<. Tl )
w(pk) ]y(qf) | <k p<m

Hahn, Kieburg, Gat, Guhr, “Winding Number Statistics for Chiral Random Matrices: Averaging
Ratios of Parametric Determinants in the Orthogonal Case™, 2023

ZW (p.q) =




Physics motivation

Disordered quantum 1D chiral systems with edges

» Goal: Classification of topological phases for 1D quantum systems in the class AlIL.

* Associated partition function: * For us today: Asymptotic expansion of

z’g{lv) (p, q) . _(ﬁ det (K (pk>) ) - (WindN) — L = (W (p)) dp

i1 det (K (q0) ) 2mi Js:

* Allows to recover m-point correlation functions:

e K is a2-matrix model:

K(p) =a(p)K1+b(p)K2

d
C(IN) (P) = (W (P)) = d_qz(lN) (Pa Q) + a, b two smooth complex-valued functions on S'
p=q

« K, K, two iid random matrices w complex entries

18
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Physics motivation

Example of determinantal curves : G,, G, drawn from Ginibre Unitary Ensemble (GinUE)

Determinantal curve 6 » det(cos(0) Gy + sin(6)G2) for N=7
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Determinantal curve 6 » det(cos(6)G1+ sin(8)G2) for N=25

Im

T I T T T I T T T I T T T

T I T T T I T T T I T

] | ] ] | ] ] |

] | ] | |

—6x1016-4x1016-2x1016

1 1 1

2x101% 4x1076 6x1016

Re

4 x 1040

2 x 1040

-2 % 1040

-4 x 1040

G : 0 — det (cos (0) G + sin (0) G2)
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Physics motivation

Example of determinantal curves : G,, G, drawn from Ginibre Unitary Ensemble (GinUE)

Determinantal curve 6 » det(Gq + e'® Gy) forn=10
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Determinantal curve 6 »I%t(G1 +elf Go) for n =50
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Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)

A class of N X N random matrices with complex entries and isotropic eigenspectrum containing most

well-known ensembles.



Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)
A class of N X N random matrices with complex entries and isotropic eigenspectrum containing most

well-known ensembles.

« Key properties: 1. Isotropic eigenspectrum,

2. Parametrised by a single function (Polya weight) @ and denoted ,



Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)
A class of N X N random matrices with complex entries and isotropic eigenspectrum containing most

well-known ensembles.

« Key properties: 1. Isotropic eigenspectrum,

Parametrised by a single function (Pdlya weight) @ and denoted ,

Singular values (eigenvalues of XX*) forms a DPP on R,

el

Eigenvalues forms a DPP on C,



Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)
A class of N X N random matrices with complex entries and isotropic eigenspectrum containing most

well-known ensembles.

« Key properties: 1. Isotropic eigenspectrum,

Parametrised by a single function (Pdlya weight) @ and denoted ,

Singular values (eigenvalues of XX*) forms a DPP on R,

Eigenvalues forms a DPP on C,

o &~ b

Closed by inversion: X ~ Poly[w] = X~! ~ Poly [av)]

6. Closed by product: X ~ Poly [a)1] , Y ~ Poly [a)2] = XY ~ Poly [a)l @ a)zl.

25



Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)

* Key properties:

1.

o >~ b

|sotropic eigenspectrum,

Parametrised by a single function (Pdlya weight) @ and denoted ,

Singular values (eigenvalues of XX*) forms a DPP on R,

Eigenvalues forms a DPP on C,

Closed by inversion: X ~ Poly[w] = X~ ! ~ Pély [av)]

Closed by product: X ~ Poly [a)l] , Y ~ Poly [a)z] = XY ~ Poly [a)l @ a)z].



Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)

* Key properties:

1.

o >~ b

|sotropic eigenspectrum:

Parametrised by a single function (Pdolya weight) @ and denoted

Singular values (eigenvalues of XX*) forms a DPP on R,

Eigenvalues forms a DPP on C,

Closed by inversion: X ~ Poly[w] = X~ ! ~ Pély [d)]

Closed by product: X ~ Poly [a)l] , Y ~ Poly [a)z] = XY ~ Poly [601 @ a)z].

+ 00 X dy
® ) (x) = j x Y
(601 602) (x) 0 W1 : 05 (Y) y

27



Random Matrix Theory

Pélya Ensembles o multiplicative type on Gly (C)

 Example: Ginibre Unitary Ensemble (GinUE)

1. G

(Zl-’]) a N X N random matrix with iid entries

3. dP;(M) x exp (—tr (MM*)) dM

4. a)GIIl (t) — e_t

Al 2
5. Jrv (zl,...,zN) X |AN(Z)| He_‘z"‘
k=1

Forrester & Byun, "Progress on the study of the Ginibre ensembles I: GinUE", 2023.
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Random Matrix Theory

P()Iya Ensembles o multiplicative type on Gly (C)

 Example: Complex Spherical Ensemble

1. Gy, G, iid from GinUE of size N

2. S = G,G; ' the generalized ratio

3. dPg (M) o det (Iy + MM*) " dM
4. wgy, () =NI(1+5)~ N+,
24 2 v
5. fiv (215 s2w) & | Ay @ | T+ [z [ H N+ D
=1

Forrester & Byun, "Progress on the study of the Ginibre ensembles I: GinUE", 2023.

29

Complex eigenvalues of G; 62'1 for N =1000

lllllllllllllllllll

lllllllllllllllllll




Random Matrix Theory

Pélya Ensembles o multiplicative type on Gly (C)

e wisstx o (x)=ew (e‘x) is a Pdlya Frequency Function of order N:

Vk € {1.....N} : A (x) A, (y) det (’af(xi —y].)> > 0.

« Continuous integrable functions in PF, are exactly log-concave functions.

 Encapsulates many famous RMT ensembles : Wishart-Laguerre, Cauchy-Lorentz,
Truncated Unitary Matrices, Muttalib-Borodin,
Meijer-G Ensembles...

Kieburg & Kosters, “Exact relation between singular value and eigenvalue statistics”, Random Matrices: Theory Appl., 2016.

Forster, Kieburg & Kosters, “Polynomial ensembles and Polya frequency functions”, J. Theor. Probab., 2020.
30
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Results

Partition function

e Our model: K (p) = d (p) Kl +4 b (p) K2 (2-matrix model) * Partition function :

. K, and K, iid with K; ~ Poly[w], a,b € €* (S',C) 70 (p.q) = E(ﬁdet <K(pf>§)

 1-point correlation :

C¥ (p) =E(w(p)) = -7 (pr0)

P=q



Results

Partition function

e Our model: K (p) = d (p) Kl +4 b (p) K2 (2-matrix model) * Partition function :

. K, and K, iid with K; ~ Poly[w], a,b € €* (S',C) 70 (p.q) = E(ﬁdet <K(Pf>§)

* QOur strategy : reduce the 2-matrix model to 1-matrix one.

 1-point correlation :

K (pj) IN_l_‘Kl—leD C(lN) (p) = (W (p)) — d_qz(lN) (P, q)

) p=

K<qj> IN+%

K'K, ~ Poly [& ® o]

(e det(a(pj)mb(pj)@) )] (¢ det(
(Hdet(a(qj>1<l+b<qj)l<2)> _gb(%’)_ (Judet<

33



Results

Partition function

e Formula for the Partition function:

det (527 [w](p, q))

ZWN (p,q) = ™ (Qm (p’q>)

34



Results

Partition function

* Formula for the Partition function: det (Q,(/,{lv)[a)](p, q))

ZWN (p,q) = » (Qm (P»Q))

35



Results

Partition function

 Formula for the Partition function: det (Q(N)[a)](p q)
Zy' (p.q) =
(161‘(:bn<l)9(1>:)

where we set v (p) = <a <p)> cC?J= <_01 (1)> and Yy (21, 22) = i o ®va)] <k, ‘Z2‘2> (Zl )k

b(p) o M|o® o] (k)

» The kernels Q_ and 55,,7)[@] are :

N
(b(po1b())
v(pp v (q;)

1

U (pk)TJU (qj>

QP @) = ( ) - QWM(w](p, q) =
1<k,j<m

1<k, j<m
36



Results

Partition function

 Formula for the Partition function: det (Q(N)[a)](p q)
m ’
N
Zz (p.q) =
det (Q, (p.a))
Mellin transformations

2
ALY (k, E > K o
where we set z/(p) = <a (p)) e C?J= < 0 1) and YN(zl,zz) — Z (Zl> M [f] (2) = Jo = f(p)dt

b(p) -0 o M|o® o] (k)

A
M |f] (. A)[ U (n) dt
0

» The kernels Q_ and 55,,7)[@] are :

N
(b(po1b())
v(pp v (q;)

1

U (pk)TJU (qj>

QP @) = ( ) - QWM(w](p, q) =
1<k,j<m

1<k, j<m
37



Results

Average winding number

- Large enough class of Pdlya weight with exponential decay : @ (f) = %", 6 > — 1,7 > 0.

. 2y 2y

N(J; v, (p) v,(p) dp +y—1ﬂg < (p) [ a(p)| - | 2(r) dp

- (Windy) = — L Lo
(Windy) Y 2 2mi 2  k (p) a (p) v b (p) ¥ | 2mi oL

38



Results

Average winding number

. Large enough class of Pdlya weight with exponential decay : @ (f) = %", 6 > — 1,y € N* .

2y 2y

dp

% *1/ _ i’ a — || b
- (Windy) = % il y(j)(p)y(l?z) ;171; V1 1 ﬂggl (p) [ (p) i (p) 2y]2_ﬂi+0(1)

Berry phase
_ Asymmetry on the parameter
|
functions of the model

39



What’s next ?

Variance winding nhumber

* Polya weights with bounded support.
* Variance of the Winding Number (work in progress)

e Central Limit Theorem for the Winding Number (work in progress)

» General GInUE(N)-valued Random Fields on S : beyond the 2-matrix model (work in progress)

K : ' = M\(C) such that: E(K(p); K(q);..) = S(p.)8,:5; /
~(K(p); iK(@)p) =0

* Investigating symmetry classes BDI and Cll in 1D (corresponding to GinOE and G1nSE)

* |nvestigating Random Chern numbers in higher dimensions

40



