Optimal decay of eigenvector overlap for non-Hermitian i.i.d matrices

Yuanyuan Xu (Chinese Academy of Sciences)

Joint with Giorgio Cipolloni (Arizona) and László Erdős (ISTA)

Log-gases in Caeli Australi: Recent Developments in and around Random Matrix Theory

> Matrix Institute, Creswick August 7, 2025

- Background and results
 - Hermitian v.s. non-Hermitian
 - Eigenvector overlaps: previous results
 - Eigenvector overlaps: new results
- Sketch of proof
 - Hermitization: from eigenvector to singular vector
 - Local laws for multi-resolvents
 - Proof strategy: zig-zag
- Summary

Wigner matrix v.s. i.i.d. matrix

	Wigner matrix	i.i.d. matrix
Empirical spectral distribution	Semicircle law supported on [-2,2]	Circular law supported on the unit disk
complex Gaussian	Gaussian unitary ensemble (GUE)	complex Ginibre ensemble
Schur decomposition	$X = U^* \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_N \end{pmatrix} U$	$X = U^* \begin{pmatrix} \lambda_1 & T_{12} & \cdots & T_{1N} \\ 0 & \lambda_2 & \cdots & T_{2N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_N \end{pmatrix} U$
Joint eigenvalue distribution	$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_{k=1}^N e^{-N\lambda_k^2}, \ \lambda_k \in \mathbb{R}$	$\frac{1}{Z_N} \prod_{j < k} \lambda_j - \lambda_k ^2 \prod_{k=1}^N e^{-N \lambda_k ^2}, \ \lambda_k \in \mathbb{C}$
Eigenvector distribution	Haar distributed on U(N) independent of e.v.	different than U(N) correlated with e.v.
real Gaussian	Eigenvalue: β=1 Eigenvector: O(N)	more complicated

Complex v.s. Real Ginibre

• Many work on eigenvalues, see survey book [Forrester, Byun'25].

• Many work on eigenvalues, see survey book [Forrester, Byun'25].

• Left/right eigenvectors form bi-orthogonal basis:

$$X\mathbf{r}_i = \lambda_i \mathbf{r}_i, \quad \mathbf{l}_i^* X = \lambda_i \mathbf{l}_i^*, \quad \langle \mathbf{l}_i, \mathbf{r}_j \rangle = \delta_{ij}.$$

• Define eigenvector overlap to quantify non-orthogonality:

$$\mathcal{O}_{ij} := \langle \mathbf{l}_i, \mathbf{l}_j \rangle \langle \mathbf{r}_j, \mathbf{r}_i \rangle, \quad \langle \mathbf{l}_i, \mathbf{r}_j \rangle = \delta_{ij}.$$

Eigenvector overlaps

• \mathcal{O}_{ij} is invariant under rescalings and $\sum_i \mathcal{O}_{ij} = 1$.

$$\mathcal{O}_{ij} := \langle \mathbf{l}_i, \mathbf{l}_j \rangle \langle \mathbf{r}_j, \mathbf{r}_i \rangle, \quad \langle \mathbf{l}_i, \mathbf{r}_j \rangle = \delta_{ij}$$

• $\sqrt{O_{ii}}$ is also known as *condition number* in smoothed analysis, describing how sensitive the eigenvalue is to small perturbations:

$$\sqrt{\mathcal{O}_{ii}} = \lim_{t \to 0} \sup_{\|E\|=1} \frac{|\lambda_i(X + tE) - \lambda_i(X)|}{t}.$$

• \mathcal{O}_{ij} determines the eigenvalue correlation under the matrix Ornstein Uhlenbeck dynamics $X_t=e^{-t/2}X+\sqrt{1-e^{-t}}\mathrm{Gin}$:

$$\mathrm{d}\lambda_i = \mathrm{d}\mathcal{M}_i - \frac{\lambda_i}{2}\mathrm{d}t, \qquad \mathrm{d}\langle \mathcal{M}_i, \overline{\mathcal{M}_j}\rangle_t = \mathcal{O}_{ij}\frac{\mathrm{d}t}{N},$$

c.f., the Hermitian Dyson Brownian motion:

$$\mathrm{d}\lambda_i = \mathrm{d}M_i + \Big(-\frac{\lambda_i}{2} + \frac{1}{N} \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} \Big) \mathrm{d}t, \quad \mathrm{d}\langle M_i, \overline{M_j} \rangle_t = \delta_{ij} \frac{\mathrm{d}t}{N}.$$

Previous results: Ginibre ensemble

• First moment for complex Ginibre [Chalker, Mehlig'98], [Bourgade, Dubach'20]:

$$\begin{split} \mathbf{E}(\mathcal{O}_{ii}|\lambda_i = z) &\sim \textit{N}(1 - |z|^2), \\ \mathbf{E}(\mathcal{O}_{ij}|\lambda_i = z_1, \lambda_j = z_2) &\sim -N\frac{1 - z_1\overline{z_2}}{|\omega|^4}\frac{1 - (1 + |\omega|^2)e^{-|\omega|^2}}{1 - e^{-|\omega|^2}}, \\ \text{with } &\omega := N|z_1 - z_2|^2, \quad |z_1|, |z_2| < 1. \end{split}$$

Scales: microscopic $|z_1 - z_2| \approx N^{-1/2}$, mesoscopic $|z_1 - z_2| \gg N^{-1/2}$.

$$\mathbf{E}(\mathcal{O}_{ij}|\lambda_i = z_1, \lambda_j = z_2) \sim -\frac{1}{N} \frac{1 - z_1 \overline{z_2}}{|z_1 - z_2|^4}.$$
 [meso]

• Condition on $\lambda_i=z$ inside the bulk |z|<1 [Bourgade,Dubach'20]:

$$\frac{\mathcal{O}_{ii}}{N(1-|z|^2)} \to \frac{1}{\gamma_2} \sim \frac{e^{-\frac{1}{x}}}{x^3} \mathbb{1}_{x \ge 0}.$$

Real eigenvalues of real Ginibre with $1/\gamma_1$ [Fyodorov'18].

• A similar result for $\frac{\mathcal{O}_{ii}}{N^{1/2}}$ near the edge $|z| \approx 1$ [Fyodorov'18].

Previous results: Ginibre ensemble

• Second moments of eigenvector overlaps [Bourgade, Dubach'20]:

$$\mathbf{E}(|\mathcal{O}_{ij}|^2|\lambda_i=z_1,\lambda_j=z_2)\sim \frac{N^2(1-|z_1|^2)(1-|z_2|^2)}{|\omega|^4},$$

$$\mathbf{E}(\mathcal{O}_{ii}\mathcal{O}_{jj}|\lambda_i=z_2,\lambda_j=z_2) \sim \frac{N^2(1-|z_1|^2)(1-|z_2|^2)}{|\omega|^4} \frac{1+|\omega|^4-e^{-|\omega|^2}}{1-e^{-|\omega|^2}}.$$

Quadradic decay on mesoscopic scales $|z_1 - z_2| \gg N^{-1/2}$:

$$\mathbf{E}(|\mathcal{O}_{ij}|^2 | \lambda_i = z_1, \lambda_j = z_2) \sim \frac{(1 - |z_1|^2)(1 - |z_2|^2)}{|z_1 - z_2|^4},$$

$$\mathbf{E}(\mathcal{O}_{ii}\mathcal{O}_{jj} | \lambda_i = z_1, \lambda_j = z_2) \sim \mathbf{E}(\mathcal{O}_{ii} | \lambda_i = z_1) \mathbf{E}(\mathcal{O}_{jj} | \lambda_j = z_2).$$

• Non-normal invariant ensemble [Benaych-Georges, Zeitouni'18]:

$$N|\lambda_i - \lambda_j|^2 \frac{|\langle \mathbf{r}_i, \mathbf{r}_j \rangle|^2}{\|\mathbf{r}_i\|^2 \|\mathbf{r}_j\|^2} = \frac{Y}{\frac{Y}{N|\lambda_i - \lambda_j|^2} + 1},$$

with Y uniformly sub-Gaussian. If $|\lambda_i - \lambda_j| \gg N^{-1/2}$, then

$$\frac{\mathcal{O}_{ij}}{\sqrt{\mathcal{O}_{ii}\mathcal{O}_{jj}}} \approx \frac{|\langle \mathbf{r}_i, \mathbf{r}_j \rangle|^2}{\|\mathbf{r}_i\|^2 \|\mathbf{r}_j\|^2} \approx \frac{Y}{N|\lambda_i - \lambda_j|^2} \ll 1.$$

Previous results: beyond Ginibre ensemble

For general i.i.d. matrices without invariance property:

• Eigenvector delocalization [Rudelson, Vershynin'15], [Alt, Erdos, Kruger'18]...

$$\sup_{i=1}^{N} \frac{\|\mathbf{r}_i\|_{\infty}}{\|\mathbf{r}_i\|_2} \le N^{-1/2+\epsilon}.$$

- Gaussian fluctuations for finite entries of eigenvector and asymptotic independent if $|\lambda_i \lambda_j| \gg N^{-1/2}$ [Dubova, Yang, Yau, Yin'24], [Osman'24].
- Size of diagonal overlap [Erdos, Ji'24], [Cipolloni, Erdos, Henheik, Schroder'24]:

$$\mathbf{E}\mathcal{O}_{ii} \leq N^{1+\epsilon}, \qquad \mathcal{O}_{ii} \geq N^{1-\epsilon'}, \quad \text{w.h.p.}$$

• Distribution of diagonal overlap [Osman'24]:

$$\frac{\mathcal{O}_{ii}}{N(1-|z|^2)} \to \frac{1}{\gamma_{\beta}} \sim \frac{e^{-\frac{\beta}{x}}}{x^{\beta+1}} \mathbb{1}_{x \ge 0},$$

with $\beta=1$ (real e.v.) and $\beta=2$ (complex). A similar result for $|z|\approx 1$.

Theorem (Cipolloni, Erdos, X.'24)

Assume that X is a real or complex i.i.d. matrix with $x_{ab} \stackrel{\mathrm{d}}{=} N^{-1/2} \chi$:

$$\mathbf{E}\chi = 0, \quad \mathbf{E}|\chi|^2 = 1, \quad \mathbf{E}|\chi^p| \le C_p,$$

additionally $\mathbf{E}\chi^2=0$ for complex. Then, with very high probability,

$$\sup_{i,j\in[N]} (N|\lambda_i - \lambda_j|^2 + 1) \left[\frac{\left| \langle \mathbf{r}_i, \mathbf{r}_j \rangle \right|^2}{\|\mathbf{r}_i\|^2 \|\mathbf{r}_j\|^2} + \frac{\left| \langle \mathbf{l}_i, \mathbf{l}_j \rangle \right|^2}{\|\mathbf{l}_i\|^2 \|\mathbf{l}_j\|^2} \right] \leq N^{\xi}.$$

In particular, by a Cauchy-Schwarz inequality, this implies

$$\sup_{i,j\in[n]} \left(N|\lambda_i - \lambda_j|^2 + 1\right) \frac{|\mathcal{O}_{ij}|}{\sqrt{\mathcal{O}_{ii}\mathcal{O}_{jj}}} \le N^{\xi}.$$

Corollary: there is a high prob event Ξ s.t. for $|z_1 - z_2| \gg N^{-1/2}$,

$$\mathbf{E}\left(|\mathcal{O}_{ij}|\cdot\mathbf{1}_{\Xi}\Big|\lambda_{i}\approx z_{1},\lambda_{j}\approx z_{2}\right)\leq\begin{cases}\frac{N^{\xi}}{|z_{1}-z_{2}|^{2}}, & [\text{complex}]\\ \frac{N^{\xi}}{|z_{1}-z_{2}|^{2}}, & [\text{real},\ \Im z_{i}>0]\end{cases}$$

Outline of the talk

- Background and results
 - Hermitian v.s. non-Hermitian
 - Eigenvector overlaps: previous results
 - Eigenvector overlaps: new results
- Sketch of proof
 - Hermitization: from eigenvector to singular vector
 - Local laws for multi-resolvents
 - Proof strategy: zig-zag
- Summary

Girko's Hermitization trick

Girko's Hermitization trick [Girko'84]:

$$H^z:=\begin{pmatrix} 0 & X-z \ (X-z)^* & 0 \end{pmatrix} \in \mathbb{C}^{2N \times 2N}, \quad z \in \mathbb{C},$$

with chiral symmtric eigenvalues and (normalized) eigenvectors:

$$\{\pm \sigma_i^z\}_{i=1}^N$$
, $\mathbf{w}_i^z = ((\mathbf{u}_i^z)^*, \pm (\mathbf{v}_i^z)^*)^* \in \mathbb{C}^{2N}$,

where $\{\sigma_i^z\}$ are singular values of X-z and $\{\mathbf{u}_i^z\}, \{\mathbf{v}_i^z\}$ are (normalized) left/right singular vectors in \mathbb{C}^N .

Link non-Hermitian with Hermitian:

z is eigenvalue of
$$X \iff 0$$
 is singular value of $X - z$.

eigenvector of
$$X$$
 for $\lambda_i = z \iff \text{singular vector of } X - z \text{ for } \sigma_1^z = 0.$

• Reduce to study singular vector overlap of $X - z_1$ and $X - z_2$:

$$\begin{split} \sup_{i \in [N]} \frac{\langle \mathbf{l}_i, \mathbf{l}_j \rangle \langle \mathbf{r}_j, \mathbf{r}_i \rangle}{\|\mathbf{l}_i\| \|\mathbf{l}_j\| \|\mathbf{r}_i\| \|\mathbf{r}_j\|} &= \sup_{z_1, z_2 \in \operatorname{Spec}(X)} \langle \mathbf{u}_1^{z_1}, \mathbf{u}_1^{z_2} \rangle \langle \mathbf{v}_1^{z_1}, \mathbf{v}_1^{z_2} \rangle \\ &\lesssim \sup_{z_1, z_2 \in \mathcal{D}} \{ |\langle \mathbf{u}_1^{z_1}, \mathbf{u}_1^{z_2} \rangle|^2 + |\langle \mathbf{v}_1^{z_1}, \mathbf{v}_1^{z_2} \rangle|^2 \}. \end{split}$$

• Define the resolvent of H^z by $G^z(w) := (H^z - w)^{-1}$, $w = E + i\eta$,

$$\frac{1}{N} \Im \text{Tr} G^z(w) = \frac{1}{2N} \sum_i \frac{\eta}{(\sigma_i^z - E)^2 + \eta^2} = \frac{1}{2N} \sum_i \delta_{\eta} (\sigma_i^z - E).$$

 $N \to \infty$ and $\eta \to 0$ gives the limiting spectral density of H^z , denoted by ρ^z .

• Local law for resolvent [Bourgade, Yau, Yin'14], [Alt, Erdos, Kruger'18]:

$$G^{z}(w) = M^{z}(w) + o(1), \qquad \eta_{N} \gg \eta_{f},$$

where M^z is the unique deterministic solution of *Matrix Dyson equation*, and $\eta_f = \eta_f(E) \sim (N\rho^z(E))^{-1}$ is the typical eigenvalue spacing at E.

Observations from local law

• Eigenvector delocal. of X = Singular vector delocal. of H^z at zero:

By a simple spectral decomposition of H^z and choose $\eta \gg \eta_f$:

$$\langle \mathbf{e}_k, \Im \operatorname{Tr} G^z(\mathrm{i} \eta) \mathbf{e}_k \rangle = \sum_i \frac{\eta}{(\sigma_i^z)^2 + \eta^2} |\langle \mathbf{e}_k, \mathbf{w}_i^z \rangle|^2 \ge \frac{1}{\eta} |\langle \mathbf{e}_k, \mathbf{w}_1^z \rangle|^2,$$

if $z \in \operatorname{Spec}(X)$, then $\sigma_1^z = 0$ and $\mathbf{w}_1^z = (\mathbf{u}_1^z, \mathbf{v}_1^z) = (\mathbf{l}_k, \mathbf{r}_k)$.

Translate to non-Hermitian eigenvectors (normalized) [Alt,Erdos,Kruger'21]:

$$\sup_{k} \{ \|\mathbf{l}_{k}\|_{\infty}, \|\mathbf{r}_{k}\|_{\infty} \} = O(N^{-1/2}).$$

• Eigenvector overlap of $X = \text{singular vector overlap } H^z$ at zero:

To study singular vector overlap of $X-z_i$ near zero, we need

$$G^{z_1}(i\eta)G^{z_2}(i\eta) \not\approx M^{z_1}M^{z_2}$$

Reduce to multi-resolvent bound

• By spectral decomposition of G^{z_i} and eigenvalue rigidity $\sigma_1^{z_i} \lesssim \eta_f$:

$$\frac{1}{N} \text{Tr} \Big[\Im G^{z_1} (i\eta_1) \Im G^{z_2} (i\eta_2) \Big] = \frac{4}{N} \sum_{j,k=1}^{N} \frac{\eta_1 \eta_2 \Big(|\langle \mathbf{u}_j^{z_1}, \mathbf{u}_k^{z_2} \rangle|^2 + |\langle \mathbf{v}_j^{z_1}, \mathbf{v}_k^{z_2} \rangle|^2 \Big)}{\Big((\sigma_j^{z_1})^2 + \eta_1^2 \Big) ((\sigma_k^{z_2})^2 + \eta_2^2 \Big)}
\gtrsim \frac{1}{N \eta_1 \eta_2} \Big[|\langle \mathbf{u}_1^{z_1}, \mathbf{u}_1^{z_2} \rangle|^2 + |\langle \mathbf{v}_1^{z_1}, \mathbf{v}_1^{z_2} \rangle|^2 \Big].$$

We hence conclude that

$$\begin{split} \sup_{|z_{i}| \leq 1} (N|z_{1} - z_{2}|^{2} + 1) \left[|\langle \mathbf{u}_{1}^{z_{1}}, \mathbf{u}_{1}^{z_{2}} \rangle|^{2} + |\langle \mathbf{v}_{1}^{z_{1}}, \mathbf{v}_{1}^{z_{2}} \rangle|^{2} \right] \\ \lesssim \sup_{|z_{i}| \leq 1} (N|z_{1} - z_{2}|^{2} + 1) (N\eta_{1}\eta_{2}) \frac{1}{N} \mathrm{Tr} \left[\Im G^{z_{1}}(\mathrm{i}\eta_{1}) \Im G^{z_{2}}(\mathrm{i}\eta_{2}) \right] \\ \lesssim \sup_{|z_{i}| \leq 1} \left(|z_{1} - z_{2}|^{2} + N^{-1} \right) \frac{N\eta_{1}\rho_{1}N\eta_{2}\rho_{2}}{|z_{1} - z_{2}|^{2}} \lesssim 1. \end{split}$$

• No cheap way to use resolvent identity reducing to one-resolvent.

Multi-resolvent local laws

Theorem (Cipolloni, Erdos, X'24)

For any deterministic bounded matrices and vectors, the following

$$\left| \left\langle \mathbf{x}, \left(G^{z_1}(\mathrm{i}\eta_1) A_1 G^{z_2}(\mathrm{i}\eta_2) - M_{12}^{A_1} \right) \mathbf{y} \right\rangle \right| \prec \frac{1}{\sqrt{N}\eta} \frac{1}{\sqrt{\gamma}},$$

$$\left| \frac{1}{N} \mathrm{Tr} \left[\left(\Im G^{z_1}(\mathrm{i}\eta_1) A_1 \Im G^{z_2}(\mathrm{i}\eta_2) - \widehat{M}_{12}^{A_1} \right) A_2 \right] \right| \prec \frac{1}{\sqrt{N\ell}} \frac{\rho_1 \rho_2}{\widehat{\gamma}},$$

hold uniformly for $|z_i| \le 1 + N^{-1/2+ au}$ and $\ell = \min_{i=1,2} \rho_i |\eta_i| \ge N^{-1+\epsilon}$, with

$$\begin{split} \|M_{12}^{A_1}\| &\lesssim \frac{1}{\gamma}, \qquad \gamma := \frac{|z_1 - z_2|^2 + \rho_1 |\eta_1| + \rho_2 |\eta_2|}{|z_1 - z_2| + \rho_1^2 + \rho_2^2}, \\ \|\widehat{M}_{12}^{A_1}\| &\lesssim \frac{\rho_1 \rho_2}{\widehat{\varpi}}, \qquad \widehat{\gamma} := |z_1 - z_2|^2 + \rho_1 |\eta_1| + \rho_2 |\eta_2|. \end{split}$$

Compare to standard local law without $|z_1 - z_2|$ decay:

$$\left|\left\langle \mathbf{x}, \left(G^{z_1}(\mathrm{i}\eta_1)A_1G^{z_2}(\mathrm{i}\eta_2) - M_{12}^{A_1}\right)\mathbf{y}\right\rangle\right| \prec \frac{1}{\sqrt{N}\eta}\sqrt{\frac{\rho}{\eta}}.$$

Note $1/\sqrt{\gamma}$ is better in the mesoscopic scale $|z_1 - z_2| \gg N^{-1/2}$.

Proof: Zig-Zag strategy

• Global law for multi-resolvent $\eta_i \sim 1$ (easy to check):

$$\left|\left\langle \mathbf{x}, \left(G^{z_1}(\mathrm{i}\eta_1)A_1G^{z_2}(\mathrm{i}\eta_2) - M_{12}^{A_1}\right)\mathbf{y}\right\rangle\right| \prec \frac{1}{\sqrt{N}}.$$

Zig step: given the random OU-matrix flow:

$$dX_t = -\frac{1}{2}X_tdt + \frac{dB_t}{\sqrt{N}}, \qquad X_0 = X, \qquad W_t := \begin{pmatrix} 0 & X_t \\ X_t^* & 0 \end{pmatrix},$$

find a proper deterministic *characteristic flow* to reduce η_i to local scales

$$\partial_t \Lambda_t = -\mathcal{S}[M(\Lambda_t)] - \frac{\Lambda_t}{2}, \qquad \Lambda_t := \begin{pmatrix} i\eta_t & z_t \\ \overline{z_t} & i\eta_t \end{pmatrix},$$

such that desired error bound of $G_{1,t}G_{2,t}$ is kept along the flow.

• Zag step: remove added Gaussian part (worse for large t and small η).

$$X_t \stackrel{\mathrm{d}}{=} e^{-\frac{t}{2}} X + \sqrt{1 - e^{-t}} \mathrm{Gin}(\mathbb{C}).$$

Summary

Zig-Zag strategy

• Zig and Zag fight agaist each other, so we run zig-zag iteratively to reduce global scale $\eta \sim 1$ to optimal local scales $\eta \sim N^{-1}$.

But it is still not enough to gain full $|z_1 - z_2|$ quadratic decay!

Proposition

Assuming $\gamma \gtrsim \eta_*/\rho^*$ and the following hold for some $0 \le b < 1$

$$\left| \left\langle \mathbf{x}, \left(G^{z_1}(i\eta_1) A_1 G^{z_2}(i\eta_2) - M_{12}^{A_1} \right) \mathbf{y} \right\rangle \right| \prec \frac{(\rho^*)^{\frac{1-b}{2}}}{\sqrt{n}(\eta_*)^{\frac{3-b}{2}} \gamma^{\frac{b}{2}}},$$

uniformly in $\min_{i=1}^2\{|\eta_i|\rho_i\} \ge n^{-1+\epsilon}$, then the same also hold for a larger $b'=b+\theta$ with $0<\theta<\epsilon/10$.

Start with the standard local law without $|z_1-z_2|$ -decorrelation (b=0): Iterate zig-zag for $O(\epsilon^{-1})$ times to increase b=0 to b=1.

Outline of the talk

- Background and results
 - Hermitian v.s. non-Hermitian
 - Eigenvector overlaps: previous results
 - Eigenvector overlaps: new results
- Sketch of proof
 - Hermitization: from eigenvector to singular vector
 - Local laws for multi-resolvents
 - Proof strategy: zig-zag
- Summary

Summary

Results: Define $\mathcal{O}_{ij} := \langle \mathbf{r}_j, \mathbf{r}_i \rangle \langle \mathbf{l}_j, \mathbf{l}_i \rangle$ with $\langle \mathbf{l}_i, \mathbf{r}_j \rangle = \delta_{ij}$.

1) Extend [Bourgade, Dubach'20] for Ginibre to iid for $|z_1-z_2|\gg N^{-1/2}$:

$$\mathbf{E}\Big(|\mathcal{O}_{ij}|\Big|\ \lambda_i\approx z_2, \lambda_j\approx z_2\Big)=O\Big(\frac{1}{|z_1-z_2|^2}\Big).$$

2) Extend Ginibre result [Benaych-Georges, Zeitouni'18] to iid cases:

$$\frac{\sqrt{N}|\lambda_i - \lambda_j||\langle \mathbf{r}_i, \mathbf{r}_j \rangle|}{\|\mathbf{r}_i\|\|\mathbf{r}_j\|} = O(1).$$

Proof: use Hermitization trick to reduce eigenvectors to singular vectors:

- a) further reduce to study $\Im G^{z_1}(i\eta_1)\Im G^{z_2}(i\eta_2)$ using eigenvalue rigidity;
- b) use zig-zag iteratively to derive the local laws for multi-resolvents.

Happy Birthday Peter!