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Complex v.s. Real Ginibre

@ Many work on eigenvalues, see survey book [Forrester,Byun'25].
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Complex v.s. Real Ginibre

@ Many work on eigenvalues, see survey book [Forrester,Byun'25].

@ Left/right eigenvectors form bi-orthogonal basis:
XI‘i I)\il‘i, l;szA11:7 <1i,I‘j> :511
@ Define eigenvector overlap to quantify non-orthogonality:

Oij = (L, i) {xj,r:),  (li,r;) = dij.
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Eigenvector overlaps

@ O;j is invariant under rescalings and Y. O;; = 1.
Oij i= (L, ) (rg,wi),  (lixj) = i

@ /O is also known as condition number in smoothed analysis, describing
how sensitive the eigenvalue is to small perturbations:

vVOi; = lim sup N(X +1E) - )\i(X)l.

=0 B=1 t

@ (0;; determines the eigenvalue correlation under the matrix Ornstein
Uhlenbeck dynamics X; = e~ */?X + /1 — e *Gin:
Ai

A =dM; = e, d(Mi, M) =0

dt
N
c.f., the Hermitian Dyson Brownian motion:

dt

, N1 1 —
dAZ—dMZ+(f—+—§APAj)dt, d(M;, M) =
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Previous results: Ginibre ensemble

@ First moment for complex Ginibre [Chalker, Mehlig'98], [Bourgade,Dubach’20]:

E(Ouilh = 2) ~ N(1 —|2]?),
1— 21731 — (1 + |w]?)e

B = Ay =) G T T

)

with w:= N|z1 — 22]%, |z1], |22| < 1.

~ N~1/2 mesoscopic |z1 — z2| > N—1/2,

Scales: microscopic |z — z2

1 1—2z12z9

E(O;j|Ai = z1,\j = 22) ~ _Nm [meso]

@ Condition on \; = z inside the bulk |z| < 1 [Bourgade,Dubach'20]:

8=

O 1 e

— s~ 0.
NO-P) 3 " e

Real eigenvalues of real Ginibre with 1/71 [Fyodorov'18].

@ A similar result for ]\(]917;2 near the edge |z| &~ 1 [Fyodorov'18].
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Previous results: Ginibre ensemble

@ Second moments of eigenvector overlaps [Bourgade,Dubach’20]:
N2(1—|z1*)(1 — |22]?)

E(|04°|Xi = 21,0 = z2) ~

|4 ’
N2(1 = [21)2)(1 — |22]2) 1 + |w|* — e~ <l
E(0i;05j|Ai = 22,Aj = 2z2) ~ P 1 o lal?

Quadradic decay on mesoscopic scales |z1 — 22| > N—/2

(1—]=1»)( = |22]*)
|21 — 22|

E(0ii0j5|Ai = 21, A; = 22) ~ E(Oui|Ai = 21)E(Oj5]\; = 22).

E(|0;|Xi = 21,05 = 22) ~

)

@ Non-normal invariant ensemble [Benaych-Georges, Zeitouni'18]:

2 |<I",I">|2 Y
NIXAi = Aj ,22J,2: Y )
[ Iy e sy

with Y uniformly sub-Gaussian. If [A; — ;| > N—1/2, then
(OFF r;,r;)|? Y
b ler .
V0iiOj5  IrallPllejl2 - NJAi = A

1.
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Previous results: beyond Ginibre ensemble

For general i.i.d. matrices without invariance property:

Eigenvector delocalization [Rudelson,Vershynin'15],[Alt,Erdos,Kruger'18]...

S{Yp Hrz”oo < —1/2+4€

i=1 [rifl =
Gaussian fluctuations for finite entries of eigenvector and asymptotic
independent if |A\; — X;| > N~1/2 [Dubova,Yang,Yau,Yin'24],[Osman’24].

Size of diagonal overlap [Erdos,Ji'24],[Cipolloni,Erdos,Henheik,Schroder'24]:

EO; < ]\71+67 O > Nl_el7 w.h.p.

Distribution of diagonal overlap [Osman’24]:
_B
Oy . i e x 1
NI —[P) "y AP

with 8 =1 (real e.v.) and 8 = 2 (complex). A similar result for |z| &~ 1.



Background and results
o

Our results: off-diagonal overlaps for i.i.d. matrix

Theorem (Cipolloni,Erdos,X.24)

. .. .. d Ao
Assume that X is a real or complex i.i.d. matrix with x,, = N 1/2x.'

Ex=0, Elx’=1, E|x*|<C,,

additionally Ex* = 0 for complex. Then, with very high probability,

[(rar)|? 1))
sup (N|X — X2 +1
Sup e A TR TWE T E

In particular, by a Cauchy-Schwarz inequality, this implies

< N¢.

sup (N|X;i — ;2 +1) 9ul o e

i,5€n] V0055 —

J
Corollary: there is a high prob event = s.t. for |z1 — 22| > N—/2,
NE&
—, complex
(‘OL,| 1~Z1,)\ NZ2) < \z1;]g2\2 [ P }
[z1—22]2° [real, Sz > 0]
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Girko's Hermitization trick

@ Girko's Hermitization trick [Girko'84]:
z._ 0 X -z 2N X2N
H '_<(sz)* 0 )E(C , z€C,
with chiral symmtric eigenvalues and (normalized) eigenvectors:

{£oi e, wi=((u))", £(v)") e,

where {o7} are singular values of X — z and {u?},{v7} are (normalized)
left/right singular vectors in CN.

@ Link non-Hermitian with Hermitian:

z is eigenvalue of X <= 0 is singular value of X — z.

eigenvector of X for \; = z <= singular vector of X — 2 for 0§ = 0.
@ Reduce to study singular vector overlap of X — z; and X — za:

1;, 1) (r;,r;
<17 J>< 2> z) _ sup <ui17ui2>(vil7vi2>
selN) NG e e | 2 20eSpec(x)
S sup {[(uitui)? 4 (vt vin) P
z1,22€D
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Local law for resolvent of H*

@ Define the resolvent of H* by G#(w) := (H?* —w)™!, w = E +in,
1 1 n 1
—QTrG* = — - = S.(c? — E).
N S TeE(w) 2N;(057E)2+n2 2Nzi: n(oi — E)

N — oo and n — 0 gives the limiting spectral density of H#, denoted by p*.

‘ . \/ —_— 1/

|zl<1, ;= N1 |2|=1, ny = N~% |2I>1, ny = N72/3

@ Local law for resolvent [Bourgade,Yau,Yin'14],[Alt,Erdos,Kruger'18]:
G*(w) = M*(w) + o(1), N > 1f,

where M~ is the unique deterministic solution of Matrix Dyson equation,
and 0y =17 (E) ~ (Np*(E))~" is the typical eigenvalue spacing at E.
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Observations from local law

@ Eigenvector delocal. of X = Singular vector delocal. of H* at zero:
By a simple spectral decomposition of H* and choose 1 > n;y:

1
|<ek7wiz>|2 > 7|<ek7wf>|25

(er, STrG* (in)ex) = z

i

3

N/
(07)% +n?
if z € Spec(X), then 0f =0 and wi = (uj, vi) = (l, rx).

Translate to non-Hermitian eigenvectors (normalized) [Alt,Erdos,Kruger'21]:

sup{ el [lrxflc } = O(N /%),

@ Eigenvector overlap of X = singular vector overlap H* at zero:

To study singular vector overlap of X — z; near zero, we need

G™ (in)G™ (i) % M M*>
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Reduce to multi-resolvent bound

@ By spectral decomposition of G* and eigenvalue rigidity o;? < ny:

N z1 zZ9\ (2 z1 Z2\|2
1 . 4 mnz ([(u;', w?)* + [(v;h, v
NTr[SGZI(im)SGﬂ(mQ)] S (It )P + 1) v ) )

N 4= (@52 +n3)(072)? +n3)

[[(ui® i) 2 + (vt vi?) 7]

2
Nmnin2

@ We hence conclude that

|S‘TEI<N\Z1 = 22 + D[(ui", u) P + [(vi*, vi*)I?]
Zil>

1 o1 . 2o /e

< sup (N|z1 fz2|2 +1)(N771772)—T1'[3G“1 (in1)SG*2 (17]2)}
|zi|<1 N

NmipiNnzp2 _ L

|zi]<1 [21 — 222 7~

@ No cheap way to use resolvent identity reducing to one-resolvent.



Sketch of proof
[e]e]e] )

Multi—resolvent local laws

Cipolloni,Erdos, X'24)

For any deterministic bounded matrices and vectors, the following

1 1
|G, (67 (im) A1 G (in2) — M3 )y)| “Na A
1 . 2z . —_ 1
‘N e[ (3G (im) A1 3G (ine) — M) As | <=2,

hold uniformly for |z;| < 1+ N—1/2+7 and ¢ = min;—1,2 p;|ni| > N1+ with

MA < L 21 = 22| + p1lmi| + p2(n2]
IM{HIS -, Y= 2 2
Y |21 — 22| + p7 + P35

; 7 :=|z1 — 22> + p1lm| + p2Inal.

TFA P1LP2
137 | <2

Compare to standard local law without |z1 — 22| decay:
21 (3 29 (1 _ Aq
6o (6 Gm) 167 ) = 21t )] < i 2.

Note 1/,/7 is better in the mesoscopic scale |z1 — z2| > N-1/2,
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Proof: Zig-Zag strategy

@ Global law for multi-resolvent 7; ~ 1 (easy to check):

1
‘<x, t(im)A1G*2 (in2) — Mf;l)y>’ =< \/—N
@ Zig step: given the random OU-matrix flow:

dBy 0 X
dX; = —7Xtdt+ ik Xo = X, Wi == (XZ‘ ot) ,

find a proper deterministic characteristic flow to reduce 7, to local scales

A :
Db = ~SIMA) = o5, Avi= (IZZ; i‘f;t) :

such that desired error bound of G1,:G2,; is kept along the flow.

@ Zag step: remove added Gaussian part (worse for large ¢ and small ).

X, Lerx+V1- e~ tGin(C).
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Zig-/Zag strategy

@ Zig and Zag fight agaist each other, so we run zig-zag iteratively to
reduce global scale 7 ~ 1 to optimal local scales n ~ N~'.

n
2O &
Ev+o
o \
M+ = Evto !
5b+g |
(2 |
s ) w \ i
(g i i
&t ; :
[0 I S R— 7@ M t

But it is still not enough to gain full |21 — 22| quadratic decay!
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Bootstrap Zig-Zag process

Assuming v 2 n./p" and the following hold for some 0 < b < 1

T 3-b b

b
vn(ne) 2z vz

uniformly in min?_; {|n;|pi} > n="T, then the same also hold for a larger
b =b+60 with 0 < 0 < ¢/10.

’<x G L(im ) A1G?2 (in2) ) >‘ (p ) 2 s

Start with the standard local law without |z1 — z2|-decorrelation (b = 0):
lterate zig-zag for O(e™!) times to increase b=0to b = 1.

(0) &o 0) &y 0) Erp1-10

1st step 2nd step [él—th step
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Summary

Results: Define Oij = <rj7ri><1j7li> with <1i7rj> = 51']'.
1) Extend [Bourgade,Dubach’20] for Ginibre to iid for |21 — z2| > N—1/2:

E(|O,-j\ Ai A 22, \j A ZQ) :o(¥).

|21 — 22|

2) Extend Ginibre result [Benaych-Georges, Zeitouni'18] to iid cases:

VN[ = A [{ri, rj)

([ 1l

=0(1).

Proof: use Hermitization trick to reduce eigenvectors to singular vectors:
a) further reduce to study SG** (in1)SG?* (in2) using eigenvalue rigidity;

b) use zig-zag iteratively to derive the local laws for multi-resolvents.



Happy Birthday Peter!
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