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Wigner matrix v.s. i.i.d. matrix



Background and results Sketch of proof Summary

Complex v.s. Real Ginibre

Many work on eigenvalues, see survey book [Forrester,Byun’25].

|z| = 1Gin(C) Gin(R)

Left/right eigenvectors form bi-orthogonal basis:

Xri = λiri, l∗iX = λil
∗
i , 〈li, rj〉 = δij .

Define eigenvector overlap to quantify non-orthogonality:

Oij := 〈li, lj〉〈rj , ri〉, 〈li, rj〉 = δij .
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Eigenvector overlaps

Oij is invariant under rescalings and
∑
iOij = 1.

Oij := 〈li, lj〉〈rj , ri〉, 〈li, rj〉 = δij

√
Oii is also known as condition number in smoothed analysis, describing

how sensitive the eigenvalue is to small perturbations:

√
Oii = lim

t→0
sup
‖E‖=1

|λi(X + tE)− λi(X)|
t

.

Oij determines the eigenvalue correlation under the matrix Ornstein
Uhlenbeck dynamics Xt = e−t/2X +

√
1− e−tGin:

dλi = dMi −
λi
2

dt, d〈Mi,Mj〉t = Oij
dt

N
,

c.f., the Hermitian Dyson Brownian motion:

dλi = dMi +
(
− λi

2
+

1

N

∑
j 6=i

1

λi − λj

)
dt, d〈Mi,Mj〉t = δij

dt

N
.
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Previous results: Ginibre ensemble

First moment for complex Ginibre [Chalker, Mehlig’98], [Bourgade,Dubach’20]:

E(Oii|λi = z) ∼ N(1− |z|2),

E(Oij |λi = z1, λj = z2) ∼ −N 1− z1z2
|ω|4

1− (1 + |ω|2)e−|ω|
2

1− e−|ω|2
,

with ω := N |z1 − z2|2, |z1|, |z2| < 1.

Scales: microscopic |z1 − z2| ≈ N−1/2, mesoscopic |z1 − z2| � N−1/2.

E(Oij |λi = z1, λj = z2) ∼ − 1

N

1− z1z2
|z1 − z2|4

. [meso]

Condition on λi = z inside the bulk |z| < 1 [Bourgade,Dubach’20]:

Oii
N(1− |z|2)

→ 1

γ2
∼ e−

1
x

x3
1x≥0.

Real eigenvalues of real Ginibre with 1/γ1 [Fyodorov’18].

A similar result for Oii
N1/2 near the edge |z| ≈ 1 [Fyodorov’18].
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Previous results: Ginibre ensemble

Second moments of eigenvector overlaps [Bourgade,Dubach’20]:

E(|Oij |2|λi = z1, λj = z2) ∼ N2(1− |z1|2)(1− |z2|2)

|ω|4 ,

E(OiiOjj |λi = z2, λj = z2) ∼ N2(1− |z1|2)(1− |z2|2)

|ω|4
1 + |ω|4 − e−|ω|2

1− e−|ω|2
.

Quadradic decay on mesoscopic scales |z1 − z2| � N−1/2:

E(|Oij |2|λi = z1, λj = z2) ∼ (1− |z1|2)(1− |z2|2)

|z1 − z2|4
,

E(OiiOjj |λi = z1, λj = z2) ∼ E(Oii|λi = z1)E(Ojj |λj = z2).

Non-normal invariant ensemble [Benaych-Georges,Zeitouni’18]:

N |λi − λj |2
|〈ri, rj〉|2

‖ri‖2‖rj‖2
=

Y
Y

N|λi−λj |2
+ 1

,

with Y uniformly sub-Gaussian. If |λi − λj | � N−1/2, then

Oij√
OiiOjj

≈ |〈ri, rj〉|2
‖ri‖2‖rj‖2

≈ Y

N |λi − λj |2
� 1.
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Previous results: beyond Ginibre ensemble

For general i.i.d. matrices without invariance property:

Eigenvector delocalization [Rudelson,Vershynin’15],[Alt,Erdos,Kruger’18]...

N
sup
i=1

‖ri‖∞
‖ri‖2

≤ N−1/2+ε.

Gaussian fluctuations for finite entries of eigenvector and asymptotic
independent if |λi − λj | � N−1/2 [Dubova,Yang,Yau,Yin’24],[Osman’24].

Size of diagonal overlap [Erdos,Ji’24],[Cipolloni,Erdos,Henheik,Schroder’24]:

EOii ≤ N1+ε, Oii ≥ N1−ε′ , w.h.p.

Distribution of diagonal overlap [Osman’24]:

Oii
N(1− |z|2)

→ 1

γβ
∼ e−

β
x

xβ+1
1x≥0,

with β = 1 (real e.v.) and β = 2 (complex). A similar result for |z| ≈ 1.
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Our results: off-diagonal overlaps for i.i.d. matrix

Theorem (Cipolloni,Erdos,X.’24)

Assume that X is a real or complex i.i.d. matrix with xab
d
= N−1/2χ:

Eχ = 0, E|χ|2 = 1, E
∣∣χp∣∣ ≤ Cp,

additionally Eχ2 = 0 for complex. Then, with very high probability,

sup
i,j∈[N ]

(
N |λi − λj |2 + 1

) [ ∣∣〈ri, rj〉∣∣2
‖ri‖2‖rj‖2

+

∣∣〈li, lj〉∣∣2
‖li‖2‖lj‖2

]
≤ Nξ.

In particular, by a Cauchy-Schwarz inequality, this implies

sup
i,j∈[n]

(
N |λi − λj |2 + 1

) |Oij |√
OiiOjj

≤ Nξ.

Corollary: there is a high prob event Ξ s.t. for |z1 − z2| � N−1/2,

E
(
|Oij | · 1Ξ

∣∣∣λi ≈ z1, λj ≈ z2

)
≤

{
Nξ

|z1−z2|2
, [complex]

Nξ

|z1−z2|2
, [real, =zi > 0]
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Girko’s Hermitization trick

Girko’s Hermitization trick [Girko’84]:

Hz :=

(
0 X − z

(X − z)∗ 0

)
∈ C2N×2N , z ∈ C,

with chiral symmtric eigenvalues and (normalized) eigenvectors:

{±σzi }Ni=1, wz
i = ((uzi )∗,±(vzi )∗)∗ ∈ C2N ,

where {σzi } are singular values of X − z and {uzi }, {vzi } are (normalized)

left/right singular vectors in CN .

Link non-Hermitian with Hermitian:

z is eigenvalue of X ⇐⇒ 0 is singular value of X − z.

eigenvector of X for λi = z ⇐⇒ singular vector of X − z for σz1 = 0.

Reduce to study singular vector overlap of X − z1 and X − z2:

sup
i∈[N ]

〈li, lj〉〈rj , ri〉
‖li‖‖lj‖‖ri‖‖rj‖

= sup
z1,z2∈Spec(X)

〈uz11 ,uz21 〉〈v
z1
1 ,vz21 〉

. sup
z1,z2∈D

{|〈uz11 ,uz21 〉|2 + |〈vz11 ,vz21 〉|2}.
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Local law for resolvent of Hz

Define the resolvent of Hz by Gz(w) := (Hz − w)−1, w = E + iη,

1

N
=TrGz(w) =

1

2N

∑
i

η

(σzi − E)2 + η2
=

1

2N

∑
i

δη(σzi − E).

N →∞ and η → 0 gives the limiting spectral density of Hz , denoted by ρz .

Local law for resolvent [Bourgade,Yau,Yin’14],[Alt,Erdos,Kruger’18]:

Gz(w) = Mz(w) + o(1), ηN � ηf ,

where Mz is the unique deterministic solution of Matrix Dyson equation,
and ηf = ηf (E) ∼ (Nρz(E))−1 is the typical eigenvalue spacing at E.
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Observations from local law

Eigenvector delocal. of X = Singular vector delocal. of Hz at zero:

By a simple spectral decomposition of Hz and choose η � ηf :

〈ek,=TrGz(iη)ek〉 =
∑
i

η

(σzi )2 + η2
|〈ek,wz

i 〉|2 ≥
1

η
|〈ek,wz

1〉|2,

if z ∈ Spec(X), then σz1 = 0 and wz
1 = (uz1,v

z
1) = (lk, rk).

Translate to non-Hermitian eigenvectors (normalized) [Alt,Erdos,Kruger’21]:

sup
k
{‖lk‖∞, ‖rk‖∞} = O(N−1/2).

Eigenvector overlap of X = singular vector overlap Hz at zero:

To study singular vector overlap of X − zi near zero, we need

Gz1(iη)Gz2(iη) 6≈Mz1Mz2
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Reduce to multi-resolvent bound

By spectral decomposition of Gzi and eigenvalue rigidity σzi1 . ηf :

1

N
Tr
[
=Gz1 (iη1)=Gz2 (iη2)

]
=

4

N

N∑
j,k=1

η1η2

(
|〈uz1j ,u

z2
k 〉|2 + |〈vz1j ,v

z2
k 〉|2

)(
(σz1j )2 + η2

1

)
((σz2k )2 + η2

2

)
&

1

Nη1η2

[
|〈uz11 ,uz21 〉|2 + |〈vz11 ,vz21 〉|2

]
.

We hence conclude that

sup
|zi|≤1

(N |z1 − z2|2 + 1)
[
|〈uz11 ,uz21 〉|2 + |〈vz11 ,vz21 〉|2

]
. sup
|zi|≤1

(N |z1 − z2|2 + 1)(Nη1η2)
1

N
Tr
[
=Gz1 (iη1)=Gz2 (iη2)

]
. sup
|zi|≤1

(
|z1 − z2|2 +N−1

)Nη1ρ1Nη2ρ2

|z1 − z2|2
. 1.

No cheap way to use resolvent identity reducing to one-resolvent.
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Multi–resolvent local laws

Theorem (Cipolloni,Erdos,X’24)

For any deterministic bounded matrices and vectors, the following∣∣∣〈x, (Gz1 (iη1)A1G
z2 (iη2)−MA1

12

)
y
〉∣∣∣ ≺ 1√

Nη

1
√
γ
,∣∣∣∣ 1

N
Tr
[(
=Gz1 (iη1)A1=Gz2 (iη2)− M̂A1

12

)
A2

]∣∣∣∣ ≺ 1√
N`

ρ1ρ2

γ̂
,

hold uniformly for |zi| ≤ 1 +N−1/2+τ and ` = mini=1,2 ρi|ηi| ≥ N−1+ε, with

‖MA1
12 ‖ .

1

γ
, γ :=

|z1 − z2|2 + ρ1|η1|+ ρ2|η2|
|z1 − z2|+ ρ2

1 + ρ2
2

,

‖M̂A1
12 ‖ .

ρ1ρ2

γ̂
, γ̂ := |z1 − z2|2 + ρ1|η1|+ ρ2|η2|.

Compare to standard local law without |z1 − z2| decay:∣∣∣〈x, (Gz1 (iη1)A1G
z2 (iη2)−MA1

12

)
y
〉∣∣∣ ≺ 1√

Nη

√
ρ

η
.

Note 1/
√
γ is better in the mesoscopic scale |z1 − z2| � N−1/2.
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Proof: Zig-Zag strategy

Global law for multi-resolvent ηi ∼ 1 (easy to check):∣∣∣〈x, (Gz1(iη1)A1G
z2(iη2)−MA1

12

)
y
〉∣∣∣ ≺ 1√

N
.

Zig step: given the random OU-matrix flow:

dXt = −1

2
Xtdt+

dBt√
N
, X0 = X, Wt :=

(
0 Xt
X∗t 0

)
,

find a proper deterministic characteristic flow to reduce ηi to local scales

∂tΛt = −S[M(Λt)]−
Λt

2
, Λt :=

(
iηt zt
zt iηt

)
,

such that desired error bound of G1,tG2,t is kept along the flow.

Zag step: remove added Gaussian part (worse for large t and small η).

Xt
d
= e−

t
2X +

√
1− e−tGin(C).
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Zig-Zag strategy

Zig and Zag fight agaist each other, so we run zig-zag iteratively to
reduce global scale η ∼ 1 to optimal local scales η ∼ N−1.

But it is still not enough to gain full |z1 − z2| quadratic decay!
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Bootstrap Zig-Zag process

Proposition

Assuming γ & η∗/ρ
∗ and the following hold for some 0 ≤ b < 1

∣∣∣〈x, (Gz1 (iη1)A1G
z2 (iη2)−MA1

12

)
y
〉∣∣∣ ≺ (ρ∗)

1−b
2

√
n(η∗)

3−b
2 γ

b
2

,

uniformly in min2
i=1{|ηi|ρi} ≥ n−1+ε, then the same also hold for a larger

b′ = b+ θ with 0 < θ < ε/10.

Start with the standard local law without |z1 − z2|-decorrelation (b = 0):
Iterate zig-zag for O(ε−1) times to increase b = 0 to b = 1.
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Summary

Results: Define Oij := 〈rj , ri〉〈lj , li〉 with 〈li, rj〉 = δij .

1) Extend [Bourgade,Dubach’20] for Ginibre to iid for |z1 − z2| � N−1/2:

E
(
|Oij |

∣∣∣ λi ≈ z2, λj ≈ z2

)
= O

( 1

|z1 − z2|2
)
.

2) Extend Ginibre result [Benaych-Georges, Zeitouni’18] to iid cases:

√
N |λi − λj ||〈ri, rj〉|
‖ri‖‖rj‖

= O(1).

Proof: use Hermitization trick to reduce eigenvectors to singular vectors:

a) further reduce to study =Gz1(iη1)=Gz2(iη2) using eigenvalue rigidity;

b) use zig-zag iteratively to derive the local laws for multi-resolvents.



Background and results Sketch of proof Summary

Happy Birthday Peter!
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