

Multiple orthogonal polynomial ensembles of derivative type

Thomas Wolfs

August 5, 2025 (KU Leuven)

Motivation

Main result: characterization of multiple orthogonal polynomial ensembles of derivative type

Motivation:

- many important random matrix models arise in this way
 E.g. GUE, LUE, JUE, their sums and products
- obtain new models with good properties
- opens up the road to develop new notions of derivative type

Overview

Overview:

- Polynomial ensembles (of derivative type)
- A finite free probability perspective
- Characterization
- Discrete notions of derivative type

PE: some history

Question: can we describe the SSV of a **product** of two random matrices X_1 and X_2 ?

- Akemann–Kieburg–Wei (2013): $X_1, X_2 = \text{Ginibre matrix}$
- Kuijlaars–Stivigny (2014): $SSV(X_1) \sim PE$, $X_2 = Ginibre matrix$
- Kieburg–Kuijlaars–Stivigny (2015): SSV(X_1) \sim PE, X_2 = truncated random unitary matrix
- ! Kieburg-Kösters (2016): $SSV(X_1) \sim PE$, $SSV(X_2) \sim PE_{MDT}$

Analogue for the EV of sums of random matrices by Kuijlaars-Román (2016)

PE: definition

Polynomial ensemble [PE (w_1,\ldots,w_n)]: probability density on \mathbb{R}^n of the form

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[w_j(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in \mathbb{R}^n.$$

→ biorthogonal ensemble (determinantal point process) with correlation kernel

$$K_n(x,y) = \sum_{k=0}^{n-1} P_k(x) Q_k(y),$$

in terms of monic $P_k \in \mathbb{R}[x]$ with deg $P_k = k$ and $Q_l \in \operatorname{span}\{w_j\}_{j=1}^{l+1}$ that satisfy

$$\int_0^\infty P_k(x)Q_l(x)dx = \delta_{k,l}, \quad k,l \in \{0,\ldots,n-1\}.$$

Important property: if $EV(X) \sim PE(w_1, \dots, w_n)$, then

$$P_n(x) = \mathbb{E}[\det(xI_n - X)].$$

PE: special cases

Polynomial ensemble $[PE(w_1, \ldots, w_n)]$: probability density on \mathbb{R}^n of the form

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[w_j(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in \mathbb{R}^n.$$

Special cases:

- OPE(w) (Coulomb gas with $\beta = 2$): $x^{k-1}w(x)$ for k = 1, ..., n
- MOPE (w_1,\ldots,w_r) : $x^{k-1}w_j(x)$ for $k=1,\ldots,n_j$ and $j=1,\ldots,r$ with $\vec{n}\in\mathcal{S}^r$ s.t. $|\vec{n}|=n$
- $PE_{DT}(\omega)$: $D^{(k-1)}\omega$ for $k=1,\ldots,n$

PE_{DT}: definition

Polynomial ensemble of derivative type [PE_{DT}(ω)]: probability density on Λ^n of the form

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[(D^{j-1}\omega)(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in \Lambda^n,$$

for a certain differential operator D on functions supported on $\Lambda \subset \mathbb{R}$.

Main notions:

- $PE_{MDT}(\omega)$: (Df)(x) = -xf'(x) on $\Lambda = (0, \infty)$ \longrightarrow SSV of (products of) invertible complex random matrices
- $\mathsf{PE}_{\mathsf{ADT}}(\omega)$: (Df) = f'(x) on $\Lambda = \mathbb{R}$ $\longrightarrow \mathsf{EV}$ of (sums of) Hermitian random matrices

Other notions:

- Förster-Kieburg-Kösters (2017): SSV of (products of) complex rectangular random matrices
- Kieburg-Li-Zhang-Forrester (2020): SSV (of products) of random unitary matrices

PE_{MDT}: examples

Polynomial ensemble of multiplicative derivative type [$PE_{MDT}(\omega)$]:

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[(-x_k \frac{d}{dx_k})^{j-1} \omega(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in (0,\infty)^n.$$

Examples:

- EV of **LUE** has $\omega(x) = x^a e^{-x}$ on $(0, \infty)$ \longrightarrow SSV of Ginibre matrix
- EV of **JUE** has $\omega(x) = x^a(1-x)^{n+b}$ on (0,1) \longrightarrow SSV of truncated random unitary matrix

Characterization by Förster–Kieburg–Kösters (2017): TFAE,

- i) ω gives rise to an *n*-point PE_{MDT}
- ii) ω is a multiplicative Pólya frequency function of order n

PE_{MDT}: properties

Polynomial ensemble of multiplicative derivative type [$PE_{MDT}(\omega)$]:

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[(-x_k \frac{d}{dx_k})^{j-1} \omega(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in (0,\infty)^n.$$

(De)composition properties:

• If $SSV(X_1) \sim PE_{MDT}(\omega_1)$ and $SSV(X_2) \sim PE_{MDT}(\omega_2)$, then

$$SSV(X_1X_2) \sim PE_{MDT}(\omega_1 *_{\mathcal{M}} \omega_2).$$

• If $\mathsf{SSV}(X_1) \sim \mathsf{PE}(w_1, \dots, w_n)$ and $\mathsf{SSV}(X_2) \sim \mathsf{PE}_{\mathsf{MDT}}(\omega)$, then

$$\mathsf{SSV}(X_1X_2) \sim \mathsf{PE}(w_1 *_{\mathcal{M}} \omega, \ldots, w_n *_{\mathcal{M}} \omega).$$

PE_{MDT}: properties

Polynomial ensemble of multiplicative derivative type:

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[(-x \frac{d}{dx_k})^{j-1} \omega(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in (0,\infty)^n.$$

Biorthogonal system:

• If $SSV(X) \sim PE_{MDT}(\omega)$, then

$$P_j^X(x) = \sum_{k=0}^j (-1)^{j-k} \binom{j}{k} \frac{(\mathcal{M}\omega_n)(j+1)}{(\mathcal{M}\omega_n)(k+1)} x^k, \quad Q_j^X(x) = \frac{1}{j! \mathcal{M}\omega_n(j+1)} (-x \frac{d}{dx})^j \omega(x).$$

--- double integral representation for kernel

• If $SSV(X_1) \sim PE(w_1, \dots, w_n)$ and $SSV(X_2) \sim PE_{MDT}(\omega)$, then

$$P_j^{X_1X_2} = P_j^{X_1} \boxtimes_j P_j^{X_2}, \quad Q_j^{X_1X_2} = Q_j^{X_1} *_{\mathcal{M}} \omega.$$

→ connection to finite free probability

Products of random matrices & finite free probability

Finite free multiplicative convolution:

$$(p_n^1 \boxtimes_n p_n^2)(x) = \sum_{k=0}^n \frac{p_n^1[k]p_n^2[k]}{(-1)^{n-k}\binom{n}{k}} x^k, \quad \text{for } p_n^j(x) = \sum_{k=0}^n p_n^j[k] x^k.$$

Marcus-Spielman-Srivastava (2022): for $n \times n$ normal matrices X_1 and X_2 , we have

$$\det(xI_n-X_1)\boxtimes_n\det(xI_n-X_2)=\mathbb{E}_{Q\in U(n)}[\det(xI_n-X_1QX_2Q^*)].$$

Thus, for $n \times n$ independent Hermitian unitarily invariant random matrices X_1 and X_2 :

$$\mathbb{E}[\det(xI_n-X_1)]\boxtimes_n \mathbb{E}[\det(xI_n-X_2)]=\mathbb{E}[\det(xI_n-X_1X_2)].$$

 \longrightarrow finite version of free multiplicative convolution law

PE_{ADT}: examples

Polynomial ensemble of additive derivative type $[PE_{ADT}(\omega)]$:

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[\omega^{(j-1)}(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in \mathbb{R}^n.$$

Examples:

- EV of **GUE** has $\omega(x) = e^{-x^2}$ on $\mathbb R$
- EV of **LUE** has $\omega(x) = x^{n+a}e^{-x}$ on $(0, \infty)$

Characterization by Förster-Kieburg-Kösters (2017):

- i) ω gives rise to an *n*-point PE_{ADT}
- ii) ω is an additive Pólya frequency function of order n

PE_{ADT}: properties

Polynomial ensemble of additive derivative type $[PE_{ADT}(\omega)]$:

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[\omega^{(j-1)}(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in \mathbb{R}^n.$$

(De)composition properties:

• If $EV(X_1) \sim PE_{ADT}(\omega_1)$ and $EV(X_2) \sim PE_{ADT}(\omega_2)$, then

$$\mathsf{EV}(X_1 + X_2) \sim \mathsf{PE}_{\mathsf{ADT}}(\omega_1 *_{\mathcal{L}} \omega_2).$$

• If $\mathsf{EV}(X_1) \sim \mathsf{PE}(w_1, \dots, w_n)$ and $\mathsf{EV}(X_2) \sim \mathsf{PE}_{\mathsf{ADT}}(\omega)$, then

$$\mathsf{EV}(X_1 + X_2) \sim \mathsf{PE}(w_1 *_{\mathcal{L}} \omega, \ldots, w_n *_{\mathcal{L}} \omega).$$

PE_{ADT}: correlation kernel

Polynomial ensemble of additive derivative type:

$$\mathcal{P}(\vec{x}) = \frac{1}{Z_n} \Delta_n(\vec{x}) \det[\omega^{(j-1)}(x_k)]_{j,k=1}^n \ge 0, \quad \vec{x} \in \mathbb{R}^n.$$

Biorthogonal system:

• If $EV(X) \sim PE_{ADT}(\omega)$, then

$$P_j^X(x) = \left(x - \frac{d}{dt}\right)^j \left[\frac{1}{\mathcal{L}\omega(t)}\right]_{t=0}, \quad Q_j^X(x) = \frac{(-1)^j}{j!}\omega^{(j)}(x).$$

- → double integral representation for kernel
- If $EV(X_1) \sim PE(w_1, \dots, w_n)$ and $EV(X_2) \sim PE_{ADT}(\omega)$, then

$$P_j^{X_1+X_2} = P_j^{X_1} \boxplus_j P_j^{X_2}, \quad Q_j^{X_1+X_2} = Q_j^{X_1} *_{\mathcal{L}} \omega.$$

---- connection to finite free probability

Sums of random matrices & finite free probability

Finite free additive convolution:

$$(p \boxplus_n q)(x) = \frac{1}{n!} \sum_{k=0}^n p^{(k)}(x) q^{(n-k)}(0).$$

Marcus-Spielman-Srivastava (2022): for $n \times n$ normal matrices X_1 and X_2 , we have

$$\det(xI_n-X_1) \boxplus_n \det(xI_n-X_2) = \mathbb{E}_{Q \in U(n)}[\det(xI_n-(X_1+QX_2Q^*))].$$

Thus, for $n \times n$ independent Hermitian unitarily invariant random matrices X_1 and X_2 :

$$\mathbb{E}[\det(xI_n-X_1)] \boxplus_n \mathbb{E}[\det(xI_n-X_2)] = \mathbb{E}[\det(xI_n-(X_1+X_2))].$$

--- finite version of free additive convolution law

MOPE_{MDT}: characterization

Theorem

If $w_1, \ldots, w_r \in L^1_{\mathcal{M}, \Sigma}(\mathbb{R}_{>0})$ give rise to an n-point MOPE for all $n \in \mathbb{N}$, then TFAE:

- i) for all $n \in \mathbb{N}$, the n-point ensemble is of multiplicative derivative type,
- *ii*) the **Mellin transforms** of w_1, \ldots, w_r are given by

$$\mathcal{M}w_{j}(s) = c^{s} \prod_{i=1}^{r} \frac{\Gamma(s+a_{i})^{d_{1}(i)}}{\Gamma(s+b_{i})^{d_{2}(i)}} \frac{s^{j-1}}{\prod_{i=1}^{j} (s+b_{i})^{d_{2}(i)}}, \quad s \in \Sigma,$$

with $d_1, d_2 : \{1, \dots, r\} \to \{0, 1\}$ with $d_1 = 1$ or $d_2 = 1$ on $\{1, \dots, r\}$.

MOPE_{MDT}: corollaries

An any-point $MOPE_{MDT}(w_1, ..., w_r)$ has

$$\mathcal{M}w_{j}(s) = c^{s} \prod_{i=1}^{r} \frac{\Gamma(s+a_{i})^{d_{1}(i)}}{\Gamma(s+b_{i})^{d_{2}(i)}} \frac{s^{j-1}}{\prod_{i=1}^{j} (s+b_{i})^{d_{2}(i)}}, \quad s \in \Sigma.$$

Corollaries:

- the only (any-point) OPE_{MDT} are the LUE and JUE (up to a linear transformation)
- most MOPE_{MDT} decompose as **products of LUE and JUE** \Rightarrow Meijer *G*-ensemble (as $n \to \infty$)

MOPE_{ADT}: characterization

Theorem

If $w_1, \ldots, w_r \in L^1_{C, \Sigma}(\mathbb{R})$ give rise to an n-point MOPE for all $n \in \mathbb{N}$, then TFAE:

- i) for all $n \in \mathbb{N}$, the n-point ensemble is of additive derivative type,
- *ii*) the Laplace transforms of w_1, \ldots, w_r are given by

$$\mathcal{L}w_{j}(s) = \exp\left(c\int_{s_{0}}^{s}\prod_{i=1}^{r}\frac{(t+a_{i})^{d_{1}(i)}}{(t+b_{i})^{d_{2}(i)}}dt\right)\frac{s^{j-1}}{\prod_{i=1}^{j}(s+b_{i})^{d_{2}(i)}},\quad s\in\Sigma,$$

with $d_1, d_2 : \{1, \dots, r\} \to \{0, 1\}$ with $d_1 = 1$ or $d_2 = 1$ on $\{1, \dots, r\}$.

MOPE_{ADT}: corollaries

An any-point $MOPE_{ADT}(w_1, ..., w_r)$ has

$$\mathcal{L}w_j(s) = \exp\left(c\int_{s_0}^s \prod_{i=1}^r rac{(t+a_i)^{d_1(i)}}{(t+b_i)^{d_2(i)}} dt
ight) rac{s^{j-1}}{\prod_{i=1}^j (s+b_i)^{d_2(i)}}, \quad s \in \Sigma.$$

Corollaries:

- the only (any-point) OPE_{ADT} are the LUE and GUE (up to an affine transformation)
- most MOPE_{ADT} decompose as sums of basic MOPE_{ADT} w.r.t.
 - Airy-like functions $(p \ge 2)$

$$\omega(x) = \int_{\mathcal{C}} e^{s^p + sx} \frac{ds}{2\pi i}, \quad x \in \mathbb{R},$$

▶ *I*-Bessel-like functions $(q \ge 0)$

$$\omega(x) = e^{-x} \sum_{k=0}^{\infty} \frac{x^{qk+c}}{k! \Gamma(qk+c+1)}, \quad x \in \mathbb{R}_{>0}.$$

→ many new examples

MOPE_{MDT} & MOPE_{ADT}: set-up

Set-up: consider sets of functions $\{v_j\}_{j=1}^n$ of **derivative type**

• MDT: if there exists $\omega \in C^{n-2}(\mathbb{R}_{>0})$, with $\omega^{(n-2)} \in AC_{loc}(\mathbb{R}_{>0})$, s.t.

$$span\{v_j(x)\}_{j=1}^n = span\{(x\frac{d}{dx})^{j-1}\omega(x)\}_{j=1}^n, \text{ a.e. } x \in \mathbb{R}_{>0}.$$

• ADT: if there exists $\omega \in C^{n-2}(\mathbb{R})$, with $\omega^{(n-2)} \in AC_{loc}(\mathbb{R})$, s.t.

$$span\{v_j(x)\}_{j=1}^n = span\{\omega^{(j-1)}(x)\}_{j=1}^n, \text{ a.e. } x \in \mathbb{R}.$$

 \longrightarrow specify later to sets of the form

$$\mathcal{W}_{\vec{n}}(\vec{w}) = \operatorname{span}\{\mathbb{R} \to \mathbb{R} : x \mapsto x^{k-1}w_j(x) \mid k = 1, \dots, n_j, j = 1, \dots, r\}.$$

$MOPE_{MDT} \& MOPE_{ADT}$: idea

Idea:

- 1. convert analytic conditions into algebraic ones by applying the appropriate transform
- 2. uncover hidden derivative type structure
- 3. use the additional structure of $\mathcal{W}_{\vec{n}}(\vec{w})$ to characterize \vec{w}

Mellin transform

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Mellin transform:

$$\mathcal{M}f(s) = \int_0^\infty f(x)x^{s-1}dx, \quad s \in \Sigma.$$

Standard properties:

• (convolution) there is a convolution $f *_{\mathcal{M}} g$ s.t.

$$\mathcal{M}(f *_{\mathcal{M}} g)(s) = \mathcal{M}f(s)\mathcal{M}g(s).$$

- (inversion) there is an inversion formula
- (differentiation) MDf(s) = sMf(s) for (Df)(x) = -xf'(x)

MDT in the Mellin space

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Proposition

If $v_1, \ldots, v_n \in L^1_{\mathcal{M}, \Sigma}(\mathbb{R}_{>0})$, then TFAE:

- i) $\{v_j\}_{j=1}^n$ is of multiplicative derivative type w.r.t. some ω ,
- *ii*) there exists $\hat{\omega}:\Sigma\to\mathbb{C}$ s.t.

$$span\{\mathcal{M}v_j(s)\}_{j=1}^n = span\{s^{j-1}\hat{\omega}(s)\}_{j=1}^n, \quad s \in \Sigma.$$

In that case, $\mathcal{M}\omega = \hat{\omega}$ on Σ .

Laplace transform

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Laplace transform:

$$\mathcal{L}f(s) = \int_{-\infty}^{\infty} f(x)e^{-sx}dx, \quad s \in \Sigma.$$

Standard properties:

• (convolution) there is a convolution $f *_{\mathcal{L}} g$ such that

$$\mathcal{L}(f *_{\mathcal{L}} g)(s) = \mathcal{L}f(s)\mathcal{L}g(s).$$

- (inversion) there is an inversion formula
- (differentiation) $\mathcal{L}Df(s) = s\mathcal{L}f(s)$ for (Df)(x) = f'(x)

ADT in the Laplace space

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Proposition

If $v_1, \ldots, v_n \in L^1_{\mathcal{L}, \Sigma}(\mathbb{R})$, then TFAE:

- i) $\{v_j\}_{j=1}^n$ is of additive derivative type w.r.t. some ω ,
- *ii*) there exists $\hat{\omega}:\Sigma\to\mathbb{C}$ s.t.

$$span\{\mathcal{L}v_j(s)\}_{j=1}^n = span\{s^{j-1}\hat{\omega}(s)\}_{j=1}^n, \quad s \in \Sigma.$$

In that case, $\mathcal{L}\omega = \hat{\omega}$ on Σ .

Sets of functions of MDT & ADT

Idea:

2. uncover hidden derivative type structure

Proposition

If, for all $n \in \{1, ..., N\}$, there exists $\hat{\omega}_n : \Sigma \to \mathbb{R}$ s.t.

$$span\{\mathcal{T}v_j(s)\}_{j=1}^n = span\{s^{k-1}\hat{\omega}_n(s)\}_{k=1}^n, \quad s \in \Sigma,$$

then there exists $d:\{1,\ldots,N-1\} \to \{0,1\}$ and $b_i \in \mathbb{R}$ s.t., for all $n \in \{1,\ldots,N\}$,

$$\hat{\omega}_n(s) = \frac{b_0 \mathcal{T} v_1(s)}{\prod_{i=1}^{n-1} (s+b_i)^{d(i)}}, \quad s \in \Sigma.$$

Interpretation: up to some linear combinations of the weights, we have

$$\frac{\mathcal{T} \tilde{v}_{n+1}(s)}{\mathcal{T} \tilde{v}_n(s)} = \begin{cases} s, & d(n) = 0, \\ \frac{1}{s+b_n}, & d(n) = 1, \end{cases} \qquad s \in \Sigma.$$

Sets $\mathcal{W}_{\vec{n}}(\vec{w})$ of MDT & ADT

Idea:

3. use the additional structure of $\mathcal{W}_{\vec{n}}(\vec{w})$ to identify \vec{w}

If additionally, for all $\vec{n} \in \mathcal{S}^r$ with $|\vec{n}| = n$,

$$span\{v_j(x)\}_{j=1}^n = span\{x^{k-1}w_j(x) \mid k = 1, \dots, n_j, j = 1, \dots, r\},\$$

then

MDT:

$$\mathcal{M}w_1(s+1)=c\prod_{i=1}^rrac{(t+a_i)^{d_1(i)}}{(t+b_i)^{d_2(i)}}\mathcal{M}w_1(s),\quad s\in\Sigma,$$

ADT:

$$(\mathcal{L}w_1)'(s) = c \prod_{i=1}^r rac{(t+a_i)^{d_1(i)}}{(t+b_i)^{d_2(i)}} \mathcal{L}w_1(s), \quad s \in \Sigma.$$

 \longrightarrow allows us to **characterize** \vec{w}

Collaborative project: overview

First meeting: tomorrow at 15h30 (room 139 of MATRIX House)

Goal: develop discrete notions of derivative type

Motivation: several non-intersecting path models seem to fit into this framework \longrightarrow deepen understanding of these models (! tiling models)

Subgoals:

- 1. fit existing non-intersecting path models in this framework
- 2. study associated kernels
 ? double integral representation of kernel → asymptotic analysis
- describe associated (de)composition properties
 hierarchy
- 4. describe implications for the initial models

Collaborative project: discrete notions of DT & MOP

Goal: develop discrete notions of derivative type

1. fit existing non-intersecting path models in this framework \longrightarrow MOP

Examples of interest:

- Johansson (2001): uniform hexagon tilings \rightarrow Hahn
- Duits–Duse–Liu (2024): non-uniform, non-periodic hexagon tilings o q-Racah
- ullet Duits-Fahs-Kozhan (2021): random growth models o descendants of multiple Hahn
- $\longrightarrow \mathsf{MOPE}_{\mathsf{DT}}$?

Question: what about the other polynomials in the (multiple) (q-)**Askey scheme**?

Collaborative project: discrete notions of DT & MOP

Example: **Hahn ensemble**, which is the discrete PE on $\{0, ..., N\}$ w.r.t.

$$v_j(x) = (-x)_j \frac{\Gamma(x+\alpha+1)}{\Gamma(x+1)} \frac{\Gamma(N-x+\beta+1)}{\Gamma(N-x+1)}.$$

Consider a shifted discrete analogue of the Mellin transform

$$\mathcal{M}_N^{\alpha} f(s) = \sum_{x=0}^N f(x) \frac{\Gamma(x+s)}{\Gamma(x+\alpha+1)}.$$

Branquinho–Díaz–Foulquié-Moreno–Mañas–W. (2025): for some (explicit) $\hat{\omega}_{N,n}$, we have

$$\operatorname{span}\{\mathcal{M}_N^{\alpha}v_j(s)\}_{j=1}^n=\operatorname{span}\{s^{k-1}\hat{\omega}_{N,n}(s)\}_{k=1}^n,\quad\operatorname{Re}(s)>0.$$

 \longrightarrow suggests underlying derivative type structure in terms of $\mathcal{T}=\mathcal{M}_N^{lpha}$

Question: what is the associated differential operator?

Collaborative project: discrete notions of DT & free probability

Goal: develop discrete notions of derivative type

3. describe associated (de)composition properties → finite free probability

Observation: $\coprod_n \& \boxtimes_n$ can be defined using the differential operator for ADT & MDT

• Mirabelli (2020):

$$(p_n^1 \boxplus_n p_n^2)(x) = \hat{p}_n^1(\frac{d}{dx})\hat{p}_n^2(\frac{d}{dx})x^n, \quad \text{for } p_n^j(x) = \hat{p}_n^j(-x\frac{d}{dx})x^n.$$

Marcus–Spielman–Srivastava (2022):

$$(p_n^1 \boxtimes_n p_n^2)(x) = \hat{p}_n^1(-x\frac{d}{dx})\hat{p}_n^2(-x\frac{d}{dx})(x-1)^n$$
, for $p_n^j(x) = \hat{p}_n^j(-x\frac{d}{dx})(x-1)^n$.

Question: what happens with other differential operators?

Any questions?