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Main result: characterization of multiple orthogonal polynomial ensembles of derivative type

Motivation:

® many important random matrix models arise in this way
E.g. GUE, LUE, JUE, their sums and products

® obtain new models with good properties

® opens up the road to develop new notions of derivative type



Overview:
® Polynomial ensembles (of derivative type)
® A finite free probability perspective
® Characterization

® Discrete notions of derivative type



PE: some history

Question: can we describe the SSV of a product of two random matrices X; and X7
® Akemann-Kieburg-Wei (2013): Xi, X, = Ginibre matrix
e Kuijlaars—Stivigny (2014): SSV(X;) ~ PE, X2 = Ginibre matrix
® Kieburg—Kuijlaars=Stivigny (2015): SSV(X1) ~ PE, X, = truncated random unitary matrix
® | Kieburg—Kosters (2016): SSV(Xi) ~ PE, SSV(X;) ~ PEupT

Analogue for the EV of sums of random matrices by Kuijlaars—Roman (2016)



PE: definition

Polynomial ensemble [PE(wa, ..., w,)]: probability density on R” of the form
1
P(X) = ?An(f() det[w;(x)]/ k=1 >0, xe€R"

— biorthogonal ensemble (determinantal point process) with correlation kernel

Z Pr(x) Qi (y),
in terms of monic Py € R[x] with deg Px = k and Q; € span{wj}/+1 that satisfy

/ Pk(X)Q/(X)dX:(Sk’/, k1€ {0,...,n—1}.
0

Important property: if EV(X) ~ PE(w1,...,w,), then
P,(x) = E[det(x/, — X)].



PE: special cases

Polynomial ensemble [PE(w4, ..., w,)]: probability density on R” of the form

1
P(%) = 2 Ba(%) detlw; ()] 4y 20, X ER".

Special cases:
® OPE(w) (Coulomb gas with 3 = 2): x*“lw(x) for k=1,...,n
® MOPE(w1,...,w,): x*“wj(x) for k=1,...,n;and j=1,...,r with 7€ S" st. [Al =n
® PEpt(w): D Yy for k=1,...,n



PEpt: definition

Polynomial ensemble of derivative type [PEpt(w)]: probability density on A" of the form

1 .
P(%) = 5 An(R) det[(D/ 7 w)(x)]f e 2 0, KEAT,

for a certain differential operator D on functions supported on A C R.

Main notions:
® PEupt(w): (Df)(x) = —xf'(x) on A = (0, 00)
— SSV of (products of) invertible complex random matrices
® PEapT(w): (Df) =f'(x) on A=R
— EV of (sums of) Hermitian random matrices
Other notions:

® Forster—Kieburg—Kosters (2017): SSV of (products of) complex rectangular random
matrices

¢ Kieburg-Li-Zhang—Forrester (2020): SSV (of products) of random unitary matrices



PEmpT: examples

Polynomial ensemble of multiplicative derivative type [PEmpT(w)]:

v 1 > d j— n > n
P(X) = ?An(x) det[(—xkd—Xk)f lw(xk)]j7k:1 >0, Xe€(0,00)".

n

Examples:
® EV of LUE has w(x) = x?e™* on (0, )
— SSV of Ginibre matrix
® EV of JUE has w(x) = x?(1 — x)"*? on (0,1)
— SSV of truncated random unitary matrix
Characterization by Forster-Kieburg—Kdsters (2017): TFAE,
i) w gives rise to an n-point PEypT

i) w is a multiplicative Pdlya frequency function of order n



PEmpT: properties

Polynomial ensemble of multiplicative derivative type [PEmpT(w)]:

> 1 va d j— n o n
P(x) = ?An(x) det[(—xkd—Xk)J 1w(xk)]j’k:1 >0, Xe€(0,00)".

n

(De)composition properties:
o |f SSV(Xl) ~ PEMDT(wl) and SSV(XQ) ~ PEMDT(UJQ), then

SSV(X1X2) ~ PEMDT(WI * M UJQ).
* If SSV(X1) ~ PE(w, ..., w,) and SSV(Xz) ~ PEmpr(w), then

SSV(X1X2) ~ PE(wWy s pq w, ooy Wy $pq w).



PEmpT: properties

Polynomial ensemble of multiplicative derivative type:

v 1 > d j— n > n
P(X) = ?A,,(x) det[(—xd—)q()l lw(xk)]Lk:l >0, Xe€(0,00)".

Biorthogonal system:
o |f SSV(X) ~ PEMDT(w), then

J Mw,)(j +1) 1 d ..
V=200 () Gt 90 = g g

— double integral representation for kernel
e If SSV(Xy) ~ PE(wr,...,w,) and SSV(X2) ~ PEmpT(w), then

DX] Xz PX g sz QX] Xz QX
.j J ' -‘. _/ ’ ./ _] ! M )
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Products of random matrices & finite free probability

Finite free multiplicative convolution:

(Ph B ) = D PR for o0 = D kI
k=0 k k=0

Marcus—-Spielman—Srivastava (2022): for n x n normal matrices X; and X3, we have
det(xl, — X1) ¥, det(xl, — X2) = Eqcy(n[det(xl, — X1 QX2 Q™)].
Thus, for n x n independent Hermitian unitarily invariant random matrices X; and Xj:
E[det(x/, — X1)] X, E[det(x/, — Xz)] = E[det(x], — X1 X3)].

— finite version of free multiplicative convolution law
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PEapT: examples

Polynomial ensemble of additive derivative type [PEapt(w)]:

1 .
P(R) = > An(X) detlli D (x )7,y 20, KR

n

Examples:
* EV of GUE has w(x) = e on R
® EV of LUE has w(x) = x""?e™ on (0, c0)
Characterization by Forster—Kieburg—Kaésters (2017):
i) w gives rise to an n-point PEApT

i) w is an additive Pdlya frequency function of order n
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PEapT: properties

Polynomial ensemble of additive derivative type [PEapt(w)]:

1 .
P(X) = ?An(f()det[w(f_l)(xk)]ﬂk:l >0, XeR"

n

(De)composition properties:
o |f EV(Xl) ~ PEADT(WI) and EV(XZ) ~ PEADT(WQ), then

EV(X1 + X2) ~ PEADT(UJl *r wz).
o If EV(X1) ~ PE(wi, ..., wy) and EV(Xz) ~ PEapT(w), then

EV(X1 4+ X3) ~ PE(wy %2 w, ..., w, xz w).

13



PEapT: correlation kernel

Polynomial ensemble of additive derivative type:

1 .
P(X) = 5 An(%) detlwl D (x)]fjy 20, X ER".

n

Biorthogonal system:
° |f EV(X) ~ PEADT(UJ), then

o= (o= %) [, @ - S

J!

— double integral representation for kernel
® If EV(Xy) ~ PE(w,...,w,) and EV(X;) ~ PEapT(w), then

PjX1+X2 _ ijl 2] PJXZ, QJ_X1+X2 _ ijl *r W
— connection to finite free probability
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Sums of random matrices & finite free probability

Finite free additive convolution:

1« _
(P By q)(x) = — > pN(x)q""(0).
k=0
Marcus—Spielman—Srivastava (2022): for n x n normal matrices X; and Xz, we have
det(xl,, — Xl) EEn det(xl,, — X2) = EQGU(,,)[det(xl,, — (X1 + QX2Q*))]
Thus, for n x n independent Hermitian unitarily invariant random matrices X; and Xj:

E[det(xl, — X1)] B, E[det(xl, — X2)] = E[det(xl, — (X1 + X2))].

— finite version of free additive convolution law
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MOPEwmpT: characterization

Theorem
Ifwy,...,w, € L}M;(RN) give rise to an n-point MOPE for all n € N, then TFAE:
i) for all n € N, the n-point ensemble is of multiplicative derivative type,

i) the Mellin transforms of wy, ..., w, are given by

r

Muw(s) = ¢* H

i=1

(s + a;)®() st
[(s + b)) TP, (s + b;)%()’

sEY,

with di,d> : {1,...,r} = {0,1} withdi =1ordp =1on{1,...,r}.
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MOPEwypT: corollaries

An any-point MOPEypt(ws, ..., w,) has

r

Mw;(s) = c* H

i=1

(s + a;)4® s1

~ — , SEX.
[(s + b))% T_, (s + b))

Corollaries:
e the only (any-point) OPEypT are the LUE and JUE (up to a linear transformation)

® most MOPEypt decompose as products of LUE and JUE
= Meijer G-ensemble (as n — o0)
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MOPEpT: characterization

Theorem
Ifwy,...,w, € L}:,Z(R) give rise to an n-point MOPE for all n € N, then TFAE:
i) for all n € N, the n-point ensemble is of additive derivative type,

i) the Laplace transforms of wy,...,w, are given by

s I (t+ a,’)dl() sj—l
Lw;(s) = ex c/ ~ dt - , SEXL,
e ( AL e ) T e e

with di,d> : {1,...,r} = {0,1} withdy =1 ordo=1o0n{1,...,r}.
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MOPEapT: corollaries

An any-point MOPEapT(wr, ..., w,) has

(t+a )dl(’) s/t
Lwj(s) =exp | c /H , bd2() 5 VTL sex.
+ [Lizi(s + bi)*

Corollaries:
e the only (any-point) OPEapT are the LUE and GUE (up to an affine transformation)

® most MOPEapT decompose as sums of basic MOPEapT w.r.t.
> Airy-like functions (p > 2)

w(x) = / e5p+sxd—5,, x € R,
c

27
> |-Bessel-like functions (g > 0)

qu+c

=e —_— R>o.
Zk'l‘qk—f—c—l—l) X € Koo

w(x) =

— many new examples
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MOPEmpT & MOPEDT: set-up

Set-up: consider sets of functions {v;}7_; of derivative type

* MDT: if there exists w € C""2(Rsg), with w("2) € AGoc(Rso), s.t.

n

span{v;(x)}j_; = span{(x%)j_lw(x) 1, ae x €Rso.
* ADT: if there exists w € C"2(R), with w("=2) € AG.(R), s.t.
span{vj(x)}/_; = span{w(j’l)(x)}j-’zl, ae. xR
— specify later to sets of the form

Wi(w) = span{R — R x = x*Twj(x) | k=1,...,n;,j=1,...,r}.
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MOPEMDT & MOPEADTS idea

Idea:
1. convert analytic conditions into algebraic ones by applying the appropriate transform
2. uncover hidden derivative type structure
3. use the additional structure of Wz(W) to characterize w
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Mellin transform

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Mellin transform: -
Mf(s) = / fx)x*tdx, scX.
0

Standard properties:

® (convolution) there is a convolution f #q g s.t.
M(f *r1 g)(s) = MF(s)Mg(s).

e (inversion) there is an inversion formula
e (differentiation) M Df(s) = sMf(s) for (Df)(x) = —xf'(x)
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MDT in the Mellin space

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Proposition
Ifvi,... Vs € Ly y(Rso), then TFAE:

i) {vj}_y is of multiplicative derivative type w.r.t. some w,

ii) there exists & : X — C s.t.

span{Myv;(s)}_; = span{sj_ldj(s)}j-’:l, sex.

In that case, Mw = & on ¥.
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Laplace transform

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Laplace transform:
LF(s) = / f(x)edx, sec¥.

— 00
Standard properties:
® (convolution) there is a convolution f %, g such that

L(f . g)(s) = Lf(s)Lg(s).

® (inversion) there is an inversion formula
e (differentiation) LDf(s) = sLf(s) for (Df)(x) = f'(x)
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ADT in the Laplace space

Idea:

1. convert analytic conditions into algebraic ones by applying the appropriate transform

Proposition
Ifvi,...,vn € Lk £ (R), then TFAE:

i) {vj}]_y is of additive derivative type w.r.t. some w,

ii) there exists & : X — C s.t.
span{Lv;(s)}/_1 = span{s'~1%(s) 1, SEL

In that case, Lw = & on .
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Sets of functions of MDT & ADT

Idea:
2. uncover hidden derivative type structure

Proposition
If, for all n € {1,..., N}, there exists &, : £ — R s.t.
span{Tv;(s)}j=1 = span{s*71,(s)}7_;, s€EX,
then there exists d : {1,...,N —1} — {0,1} and b; e R s.t., forallne€ {1,..., N},

boT vi(s)

0 AY  sey.
s + b

On(s) =

Interpretation: up to some linear combinations of the weights, we have

Tinia(s) _ {s, d(n) =0,

T0n(5) d(n) =1, sex

1
s+b,’
26



Sets Wyz(w) of MDT & ADT

Idea:
3. use the additional structure of Wz(W) to identify w

If additionally, for all 7€ 8" with |A] = n,

span{v;(x)}/_; = span{x*tw;(x) | k=1,...,n,j=1,...,r},

then
e MDT:
t+ a;
MW1(5+1) = CH #Mwl( ) sE Z,
e ADT: d(
t 4+ a;)V
(Lwy)'( _CH(t—i-b a0 Lwi(s), seX.

— allows us to characterize w
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Collaborative project: overview

28

First meeting: tomorrow at 15h30 (room 139 of MATRIX House)

Goal: develop discrete notions of derivative type

Motivation: several non-intersecting path models seem to fit into this framework
— deepen understanding of these models (! tiling models)
Subgoals:

1. fit existing non-intersecting path models in this framework

2. study associated kernels
7 double integral representation of kernel — asymptotic analysis

3. describe associated (de)composition properties
? hierarchy

4. describe implications for the initial models



Collaborative project: discrete notions of DT & MOP

29

Goal: develop discrete notions of derivative type
1. fit existing non-intersecting path models in this framework — MOP

Examples of interest:

® Johansson (2001): uniform hexagon tilings — Hahn

® Duits—Duse-Liu (2024): non-uniform, non-periodic hexagon tilings — g-Racah

® Duits—Fahs—Kozhan (2021): random growth models — descendants of multiple Hahn
— MOPEpt?

Question: what about the other polynomials in the (multiple) (g-)Askey scheme?



Collaborative project: discrete notions of DT & MOP
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Example: Hahn ensemble, which is the discrete PE on {0,..., N} w.r.t.

Mx+a+1)I(N-—x+8+1)

vi(x) = (=); Fx+1) T(N—x+1)

Consider a shifted discrete analogue of the Mellin transform

EN: F(x CMx+s)

e I'(x +a+1)

Branquinho—-Diaz—Foulquié-Moreno—Mafias—W. (2025): for some (explicit) & n, we have
span{/\/l%\/j(s)}J’-’:1 = span{sk_lcb,v,,,(s)}ﬂzl, Re(s) > 0.

— suggests underlying derivative type structure in terms of 7 = M$,

Question: what is the associated differential operator?



Collaborative project: discrete notions of DT & free probability

Goal: develop discrete notions of derivative type

3. describe associated (de)composition properties — finite free probability

Observation: B, & X, can be defined using the differential operator for ADT & MDT
® Mirabelli (2020):

(8L B0 P2)(6) = BB SN for pllx) = Bl(—x )"

® Marcus—Spielman—Srivastava (2022):

(Ph Ry P2)(x) = B(— ) —x ) (x — 1), for ph(x) = Bi(—x-)(x ~ 1)

Question: what happens with other differential operators?
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Any questions?



