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Definition of biorthogonal polynomials

Recall the well-known orthogonal polynomials {pn}∞n=0 with respect to a weight function
W (x) ∫

pj(x)pk(x)W (x)dx = δj ,khk ,

where pn is a monic polynomial of degree n, and the integral is assumed to be over R or a
subset of it.

The biorthogonal polynomials {pn}∞n=0 and {qn}∞n=0 with respect to a weight function
W (x) and a function f (x), are monic polynomials of degree n, such that∫

pj(x)qk(f (x))W (x)dx = δj ,khk .

If f (x) = x , they degenerates into orthogonal polynomials.

If the weight function W (x) is positive and f (x) is strictly increasing, the biorthogonal
polynomials are uniquely defined, like orthogonal polynomials.
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Biorthogonal ensemble
We consider the particle system, such that n particles are distributed on R or a subset of it,
with the joint probability density

Z−1
n

∏
1≤i<j≤n

(xi − xj)(f (xi )− f (xj))
n∏

i=1

W (xi ).

This is a generalized log-gas model, as there are two types of 2-particle interactions, one
is the logarithmic intercation xi − xj and the other is modified by f . If f (x) = x , this is
the standard log-gas model, or rather the “orthogonal polynomial ensemble”.
The biorthogonal ensemble is a special determinantal point process: The k-point
correlation functions of the particles, (k = 1, 2, . . . , n), are expressed in a determinantal
form by a correlation kernel Kn(x , y). Furthermore, the correlation kernel can be
expressed by the biorthogonal polynomials with respect to W (x) and f (x):

Kn(x , y) =
n−1∑
j=0

pj(x)qj(f (y))

hj
W (x).
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Difference from orthogonal polynomial ensemble

The correlation kernel Kn(x , y) is not symmetric, and probably cannot be symmetrized.

Generally there is no Christoffel-Darboux formula to simplify the summation formula of
Kn(x , y). In some cases, the only way to evaluate the limit of Kn(x , y) is to compute the
limits of pj(x) and pj(x) for all j = 0, 1, . . . , n − 1, and then sum up their products.
Although seemingly cumbersome, it often works.
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Muttalib-Borodin (MB) ensemble as a special biorthogonal ensemble

Consider n particles on R+ with joint pdf

Z−1
n

∏
1≤i<j≤n

(xi − xj)(x
θ
i − xθj )

n∏
i=1

xαi e
−nV (xi ), xi ∈ R+.

This is the biorthogonal ensemble with f (x) = xθ and W (x) = xαe−nV (x).

If θ = 1 and V (x) = x , then the MB ensemble becomes the celebrated Wishart ensemble,
that is central in multivariate statistics.

θ = 1: Random Hermitian matrix model of Laguerre type.

e−nTrV (M).

V (x) = x was Muttalib’s original definition (toy model for quasi-1D conductor) [Muttalib
95]. Later it was connected to random matrices. This distribution can be realized as
singular values of an random upper triangular matrix [Cheliotis 18].
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MB ensemble with V (x) = x
Borodin found an explicit formula for the correlation kernel, and found its limit [Borodin
99]. Actually, Borodin introduced the term “biorthogonal ensemble” in this paper.

[Forrester-W 15] and independently [Zhang 13] expressed the biorthogonal polynomials in
contour integral form, and the correlation kernel in double contour integral form. They
rederived Borodin’s result.

The biorthogonal polynomials are

pk(x) ∼
enx

2πi

∮
Γ(z + 1)

k∏
j=1

(z − θ(j − 1)− α)
dz

(nx)z+1
,

qk(x
θ) ∼ x−α

2πi

∮
(nx)w

Γ(w + 1)
∏k+1

j=1 (w − θ(j − 1)− α)
dw .

The correlation kernel formula is

Kn(x , y) =

∮
dz

2πi

∮
dw

2πi

x−1(nx)−zΓ(z + 1)
∏n

k=1(z − θ(j − 1)− α)

(z − w)(ny)−wΓ(w + 1)
∏n

k=1(w − θ(j − 1)− α)
.
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Limiting density of the larticles, aka equilibrium measure
The limiting density is given by the Fuss-Catalan distribution with parameter θ−1 (figures from
[Claeys-Romano15], with the solid for θ = 2 and dashed for θ = 1, the Marcenko-Pastur law):

As x → 0+, the density blows up like x−1/(θ+1).

The Fuss-Catalan distribution also occurs in the limiting density of the product of Ginibre
matrices, as studied by Akemann, Wei, Kieberg, Ipsen, Forrester, Liu, Kuijlaars, Zhang,
Strahov, Burda, Janik, Waclaw, Penson, Zyczkowski, etc. Omission is due to my
ignorance.
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Limit of the biorthogonal polynomials at 0 with θ ∈ Z+

With ρ a constant,

pn

(
z

(ρn)1+1/θ

)
∼ ψ(z) +O

(
n−

1
2θ+1

)
,

qn

(
zθ

(ρn)θ+1

)
∼ ψ̃(z) +O

(
n−

1
2θ+1

)
,

where the limit functions are given in Meijer G-functions

ψ(z) = zθ−α−1G θ,0
0,θ+1

(
−

α−θ+1
θ , α−θ+2

θ , . . . , α−1
θ , αθ , 0

∣∣∣∣ zθ) ,
ψ̃(z) = G 1,0

0,θ+1

(
−

0, −α
θ ,

1−α
θ , . . . , θ−1−α

θ

∣∣∣∣ zθ) .
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A brief review of Meijer G-functions

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣z) =
1

2πi

∫
L

∏m
j=1 Γ(bj + u)

∏n
j=1 Γ(1− aj − u)∏q

j=m+1 Γ(1− bj − u)
∏p

j=n+1 Γ(aj + u)
z−udu,

where Γ denotes the usual gamma function and the branch cut of z−u is taken along the
negative real axis.
When θ = 1, both of ψ(z) and ψ̃(z) become the same Bessel function.
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Limit of the correlation kernel at 0 with θ ∈ Z+

lim
n→∞

(ρn)−(1+ 1
θ
)Kn

(
x

(ρn)1+1/θ
,

x

(ρn)1+1/θ

)
= K (α,θ)(x , y),

where

K (α,θ)(x , y) = θ2
∫ 1

0
(ux)αψ(ux)ψ̃(uy)du

= θx−1

∫ i∞

−i∞
ds

∮
γ−

dt
Γ(t)

∏θ
i=1 Γ(

α+i
θ − s)

Γ(s)
∏θ

j=1 Γ(
α+j
θ + t)

xθs

yθt
1

s − t
.

When θ = 1, it specializes into the Bessel kernel, the universal hard-edge correlation
kernel for Laguerre-type matrix models.
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Hard edge universality at 0, θ ∈ Z+

We expect the local universality of the MB ensemble, like in the usual log gas models and
random matrix models that are related to orthogonal polynomials (and in many other scenarios
beyond orthogonal polynomials, log gas, or random matrix theory). The conjecture is that for
any potential V , as long as the equilibrium measure determined by V has x1/(θ+1) blowup
behaviour at 0, the limit distribution of the left-most particles is the same as in the V (x) = x
special case.

This local universality is proved in [W-Zhang 22] for θ ∈ Z+ under the technical
assumption that V (x) is real analytic and xV (x) is convex (which implies that the
equilibrium measure is “one-cut regular”).

The proof is based on a vector Riemann-Hilbert problem (RHP), a variation of the RHP
for orthogonal polynomials.

The technical difficulty is the construction of a (θ + 1)× (θ + 1) model RHP. This
construction is explicit, by Meijer G-functions, inspired by the known limiting formulas of
pn and qn.
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The hard edge universality is also proved for θ = 1/m by [Kuijlaars-Molag 19], [Molag 21],
which is essentially equivalent to the θ = m case due to the change of variable formula

∏
1≤i<j≤n

(xi − xj)(x
θ
i − xθj )

n∏
i=1

xαi e
−nV (xi )dxi

⇔
∏

1≤i<j≤n

(y
1
θ
i − y

1
θ
j )(yi − yj)

n∏
i=1

y
α+1
θ

−1

i e−nV (y
1/θ
i )dyi .

Main difference of the two approaches: [Kuijlaars-Molag 19] and [Molag 21] make use of
a Christoffel-Darboux formula and encode it into a matrix-valued RHP, thanks to the
equivalence of the MB biorthogonal polynomials with a kind of multiple orthogonal
polynomials, and the machinery of large size RHP for multiple orthogonal polynomials
(developed by Kuijlaars, Bleher, Van Assche, Aptekarev, etc.) On the other hand,
[W-Zhang 22] directly sums up pk(x)qk(y

θ), as mentioned above.

Dong Wang (UCAS) Biorthogonal polynomials LiCA Random Matrix Theory 13 / 45



Hard-to-soft transition for MB ensemble with θ = 1

We consider the limiting density of particles of the MB ensemble, with V (x) that does not
satisfy the condition for the hard edge universality. First, we consider the θ = 1 case with
V (x) = 1

2t (x − 2)2 with t = 1.2, 1 and 0.7 (Figures from [Claeys-Kuijlaars 08])

0

0.2

0.4

0.6

2 4
0

0.2

0.4

0.6

2 4
0

0.2

0.4

0.6

2 4

It is clear that as t decreases to be less than 1, the support of the limiting density is an
interval [a, b] with a > 0, and the limiting density vanishes like (x − a)1/2, a typical soft
edge behaviour. We naturally expect the Tracy-Widom distribution for the local limit.
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When t = 1, the transitioning regime, the support of the limiting density is an interval
[0, 4], and the limiting density also vanishes like x1/2. However, we expect a different
local limiting distribution there.

It was solved in [Claeys-Kuijlaars 08] that th limiting distribution is described by a 2× 2
RHP associated to the Painlevé XXXIV equation (a variation of the Painlevé II equation).

The relation between the limiting distribution and the Painlevé equation is by integrable
system structure:

1 First, from the 2× 2 matrix valued RHP for the orthogonal polynomials, a limiting model
RHP is derived.

2 Next, from the Lax pair of the model RHP, we write down the zero-curvature equation, and
show that is simplifies into a Painlevé equation.

(The relation will be explicitly explained later.)

Dong Wang (UCAS) Biorthogonal polynomials LiCA Random Matrix Theory 15 / 45



Hard-to-soft transition for MB ensemble with θ = 2

We consider the limiting density for θ = 2 and V (x) = x2 + tx , with
t = 0,−1.8,−2,−2.5,−3,−4. We can see that the transition happens at t = −2. (Figures
from [Claeys-Romano 14].)

Nonlinearity 27 (2014) 2419 T Claeys and S Romano
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Figure 6. The equilibrium density ψ(x) for V (x) = x2 + ρx if ρ = 0, ρ = −1.8 and
ρ = −2 (upper row), ρ = −2.5, ρ = −3 and ρ = −4 (middle row), with θ = 2.
Observe the transition where the hard edge turns into a soft edge, at ρ = −2. For
comparison, in the bottom row, the densities are constructed under the (false) one-cut
assumption with a hard edge for ρ = −2.5, ρ = −3 and ρ = −4, which are negative
near 0.

For general θ , one expects a critical value ρc = ρc(θ) < 0 such that the equilibrium measure
is one-cut supported without a hard edge for ρ < ρc, one-cut supported with a hard edge and
with local behaviour

ψ(x) = d1x
− 1

θ+1 (1 + o(1)), x → 0, (4.30)

for ρ > ρc, and such that

ψ(x) = Cx
θ−1
θ+1 (1 + o(1)), x → 0, (4.31)

for ρ = ρc. At the critical value, the constant d1 in (1.33)–(1.35) must vanish.

5. Scaling limits of the correlation kernel

In the previous sections, we explained how one can compute the equilibrium measure associated
with the point processes (1.1) if w = e−nV , which is expected to describe the macroscopic
behaviour of the particles in the large n limit. In order to have more detailed information about
the microscopic behaviour of the particles, one is typically interested in the scaling limits of
the correlation kernel (1.4). Such scaling limits have been investigated in detail in the random
matrix case θ = 1 and have led to a number of universal limiting kernels if w(x) = xαe−nV (x).
Loosely speaking, for θ = 1, there are three different regular scaling limits:

(i) If x > 0 lies in the bulk of the spectrum, i.e. x lies in the interior of the support of the
equilibrium measure and the density ψ(x) > 0, then the scaled correlation kernel tends

2440

In the transition regime, at 0, the density vanishes at the speed of x1/3. In general, for
θ = 2, 3, 4, . . . , the density vanishes at the speed of x (θ−1)/(θ+1). (But it is not true for θ = 1!)
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Result for the transition regime

In the transition regime, we consider the “double scaling” limit, for example, θ = 2 and
V (x) = x2 + tx with t = −2 + τn−1/2. With some constant ρ,

pn

(
z

(ρn)(θ+1)/(2θ)

)
∼ ψ(τ)(z) +O

(
n−

1
2θ+1

)
,

qn

(
zθ

(ρn)(θ+1)/2

)
∼ ψ̃(τ)(z) +O

(
n−

1
2θ+1

)
,

where ψ(τ)(z) and ψ̃(τ)(z) are transcendental functions defined by the model RHP that
will be specified later.

As τ → ∞, ψ(τ)(z) (resp. ψ̃(τ)(z)) converges to ψ(z) (resp. ψ̃(z)) after a scaling
transform. As τ → −∞, ψ(τ)(z) (resp. ψ̃(τ)(z)) converges to the Airy function after a
linear transform.
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lim
n→∞

(ρn)−(θ+1)/(2θ)Kn

(
x

(ρn)(θ+1)/(2θ)
,

x

(ρn)(θ+1)/(2θ)

)
= K (α,θ,τ)(x , y).

where

K (α,θ,τ)(x , y) =

∫ τ

−∞
ψ(σ)(x)ψ̃(σ)(y)dσ.

Remark

We at last remark that the result for the transitive regime does not hold in the θ = 1 case.
The scaling for the transitive regime in the θ = 1 case is O(n−2/3), the same as the soft edge
regime, rather than O(n−1) suggested by extrapolating the formulas above.
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Transition model RHP (θ = 1 case)

As constructed in [Claeys-Kuijlaars 08], Ψ(ζ) is a 2× 2 matrix-valued function, which is
analytic for ζ in C\{∪4

j=1Σj ∪ {0}}, where
1 Ψ(ζ) satisfies the jump condition

Ψ+(ζ) = Ψ−(ζ)



(
1 0

0 1

)
, ζ ∈ Σ1,(

1 0

−eαπi 1

)
, ζ ∈ Σ2,(

0 −1

1 0

)
, ζ ∈ Σ3,(

1 0

−e−απi 1

)
, ζ ∈ Σ4.










J
J

JJ
]

� -

�

0

Σ4

Σ2

Σ3 Σ1p

Dong Wang (UCAS) Biorthogonal polynomials LiCA Random Matrix Theory 19 / 45



2 As ζ → ∞,

Ψ(ζ) =
(
I ++O

(
ζ−1
)) ζ− 1

4
σ3

√
2

(
1 i
i 1

)
e−( 2

3
ζ3/2+τζ1/2)σ3 ,

where the functions ζ1/4, ζ1/2, ζ3/2 take the principle branches.

3 As ζ → 0,
Ψ(ζ) = N(ζ)ζ

α
2
σ3E ,

where E is a piecewise constant function on C \ Σ if α /∈ Z.
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Transition model RHP (θ = 2 case)
Ψ(ζ) is a 3× 3 matrix-valued function, which is analytic for ζ in C\{∪4

j=1Σj ∪ {0}}, where
1 Ψ(ζ) satisfies the jump condition Ψ+(ζ) = Ψ−(ζ)J

(2)(ζ), where

J(2)(ζ) =



0 1 0

1 0 0

0 0 1

 , ζ ∈ Σ1,

1 e−
2πiα
3 0

0 1 0

0 0 1

 , ζ ∈ Σ2,

1 0 0

0 0 1

0 1 0

 , ζ ∈ Σ3,

1 −e
2πiα
3 0

0 1 0

0 0 1

 , ζ ∈ Σ4.

0 Σ1

Σ2

Σ3

Σ2
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Transitive model RHP (θ = 2 case)
2 Ψ(ζ) has the following boundary condition as ζ → ∞

Ψ(ζ) = (I +O(ζ−1)) diag(1,−ωζ
1
3 , ω2ζ

2
3 )

×



1 1 1
1 ω ω2

1 ω2 ω

 diag

(
e−

3
4
ω2ζ

2
3−τωζ

1
3 , e−

3
4
ωζ

2
3−τω2ζ

1
3 , e−

3
4
ζ
2
3−τζ

1
3

)
, ζ ∈ C+,

 1 1 1
ω 1 ω2

ω2 1 ω

 diag

(
e−

3
4
ωζ

2
3−τω2ζ

1
3 , e−

3
4
ω2ζ

2
3−τωζ

1
3 , e−

3
4
ζ
2
3−τζ

1
3

)
, ζ ∈ C−.

3 Ψ(ζ) has the following boundary condition as z → 0

Ψ(ζ) = N(ζ) diag
(
ζ

1
2
−α

3 , ζ
α
6 , ζ

1
2
+α

6

)
E ,

where E is a piecewise constant function on C \ Σ if α /∈ Z.
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Model RHP for θ ∈ Z+ and ψ(τ)(z) and ψ̃(τ)(z)

For θ ∈ Z+, the model RHP is of size (θ + 1)× (θ + 1).

ψ(τ)(z) is represented by the first row of the model RHP.

ψ̃(τ)(z) is represented by the first column of the inverse of the model RHP.
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Lax pair (θ = 1)

From the solution of the transitive model RHP, we define the Lax pair

d

dζ
Ψ = AΨ,

d

dτ
Ψ = BΨ.

From the structure of the RHP, we conclude that A,B are both analytic in ζ ∈ C \ {0}. We
also have that the Laurent series of A has only the degree 1, degree 0 and degree −1 terms,
and the Laurent series of B has only the degree 1 and degree 0 terms. The Lax pair can be
expressed as [Its-Kuijlaars-Östensson 08]

∂

∂ζ
Ψ(ζ) =

(
uτ
2ζ i − i uζ

−iζ − i(u + τ)− i u
2
τ−α2

4uζ −uτ
2ζ

)
Ψ(ζ),

∂

∂τ
Ψ(ζ) =

(
0 i

−iζ − 2i(u + τ/2) 0

)
Ψ(ζ).
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Lax pair (θ = 2)

From the solution of the transitive model RHP, we define the Lax pair

d

dζ
Ψ = AΨ,

d

dτ
Ψ = BΨ.

From the structure of the RHP, we conclude that A,B are both analytic in ζ ∈ C \ {0}. We
also have that the Laurent series of A has only the degree 0 and degree −1 terms, and the
Laurent series of B has only the degree 1 and degree 0 terms.

A = A0(τ) + A−1(τ)ζ
−1, B = B1(τ)ζ + B0(τ),
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with

A0 =

 0 0 0
1 0 0
−τ 1 0

 , A−1 =

b c + τ −1
a −b − f + 1

3 −c + τ
d k f + 2

3

 ,

B1 =

 0 0 0
0 0 0
−1 0 0

 , B0 =

 −c 1 0
f − τc 0 1

τ(b + f )− (a+ k) b + τc c

 .
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Zero-curvature equation
Then we have the zero-curvature equation for

dA

dτ
− dB

dζ
+ AB − BA = 0.

In the θ = 1 case, it implies the Painlevé XXXIV equation

u′′(s) = 4u(s)2 + 2su(s) + (2u(s))−1(u′(s)2 − α2).

In the θ = 2 case, the zero-curvature equation then becomes

b′

3
= − cf − k + τ(b + c2) + τ2c ,

c ′

3
= −c2 − b − f ,

f ′

3
= −bc + a− τ(f + c2) + τ2c ,

a′

3
= 2bf + f 2 − ck + d − 1

3
f − τ(bc − a− k − 1

3
c)− τ2(b + f ),

k ′

3
= − b2 − 2bf − ac − d − 1

3
b − τ(cf + a+ k +

1

3
c) + τ2(b + f ),

d ′

3
= 2cd − bk + af +

2

3
a+

2

3
k − τ(f 2 − b2 − ac − ck +

2

3
b +

2

3
f ).
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After some algebraic manipulations, the six equations are reduced into one:

c ′′′ + 3 · 2
3
2 c ′2 +

4

3
τ2c ′ + 4τc +

√
2

9
(1 + 3α− 3α2) = 0.

Let y(τ) = c( τ√
2
) + τ3

108 , then y satisfies the Chazy-I equation

y ′′′ + 6y ′2 + τy − 1

72
τ4 +

1

6
(α− α2) = 0.

Furthermore, let u(τ) =
√
2c(τ) + 4

27τ
3, we have

(u′′)2 + 4(u′)3 − 4(τu′ − u)2 +
4

3
(α− α2 − 1)u′ +

4

27
(α+ 1)(2α− 1)(α− 2) = 0,

which is the third member of the Chazy’s system (III) and can be solved in terms of the
Painlevé IV equation.
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Relation to Boussinesq equation
Consider the Boussinesq equation

utt +
1

2
(u2)xx + uxxxx = 0.

If we take the similarity reduction (α, β, γ are constants)

u(x , t) =
g(z)

t + γ/(2α)
, τ =

x + β/α

[t + γ/(2α)]1/2
,

then g(τ) satisfies [Clarkson-Kruskal 89]

τ2

4

d2g

dτ2
+

7τ

4

dg

dτ
+ 2g + g

d2g

dτ2
+

(
dg

dτ

)2

+
d2g

dτ4
= 0.

This is satisfied by g(τ) = 3
√
6c ′(31/4τ/2).

Remark

The Painlevé XXXIV equation is related to the KdV equation in a similar way.
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Relation to Drinfeld-Sokolov/Gelfand-Dickey hierarchies

[Liu-Wu-Zhang 22] studies the similarity reductions of Drinfeld-Sokolov hierarchies. They

find that for the hierarchies associated to A
(1)
1 (KdV) and A

(1)
2 (Boussinesq), the

reductions yield the Lax pairs for the θ = 1 and θ = 2 cases.

We find that for general θ ∈ Z+, the Lax pairs are related to the Drinfeld-Sokolov

hierarchies associated to A
(1)
θ , or the Gelfand-Dickey hierarchies, in this way.
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Muttalib-Borodin on the real line with θ = 2

Now we consider the Hermite type, rather than the Lagerre type, of the MB ensemble with
θ = 2

Remark

In [Borodin 99], a Hermite type biorthogonal ensemble is defined. But our definition is
different from the one in [Borodin 99].

We may consider the joint distribution function

∏
1≤i<j≤n

(xi − xj)(x
2
i − x2j )

n∏
i=1

W (xi ), xi ∈ R,

and similarly we can define the biorthogonal ensembles pn and qn, and then Kn(x , y).

But this is not a probability density, and the total integral may not be nonzero. This
makes the well-definedness of pn, qn, and Kn(x , y) troublesome.
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Well-definedness of a special case

Consider the joint density function for V (x) being an even function, a > 0 and α > −1:

∏
1≤i<j≤n

(xi − xj)(x
2
i − x2j )

n∏
i=1

W (c)(xi ), W (c)(x) = |x |αe−2n(V (x)−ax) ×

{
1, x ≥ 0,

c , x < 0.

Then define the biorthogonal polynomials pn, qn by the biorthogonality

⟨p(c)j (x), q
(c)
k (x2)⟩c = δjkh

(c)
j , ⟨f (x), g(x)⟩c =

∫
R
f (x)g(x)W (c)(x)dx ,

We have that if c ∈ [−1, 1], then the total integral of the joint density function is nonzero,

and p
(c)
n , q

(c)
n , and K

(c)
n (x , y) are well defined.
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Hermitian matrix with symmetric external source model
Denote the 2n-dimensional diagonal matrix

A = diag(a, . . . , a︸ ︷︷ ︸
n entries

,−a, . . . ,−a︸ ︷︷ ︸
n entries

), a > 0.

We consider the 2n-dimensional random Hermitian matrix M whose distribution is given by

1

C
|det(M)|αe−2nTr(V (M)−AM)

where the potential function V is an even real analytic function, and α > −1. If α = 0, this is
the well known Hermitian matrix model with external source.

It is well known that the distribution of the eigenvalues of M is a determinantal point
process, with correlation kernel K ext

2n (x , y).

Too many people have had contributions in this model: Brezin, Hikami, Zinn-Justin,
Tracy, Widom, Adler, van Moerbeke, Bleher, Kuijlaars, Aptekarev, Delvaux, McLaughlin,
Siva, Mart́ınez-Finkelshtein, Erdös, Krüger, Schröder, . . . . Sorry for the omission due to
my ignorance.

Dong Wang (UCAS) Biorthogonal polynomials LiCA Random Matrix Theory 33 / 45



Relation between the generalized Muttalib-Borodin ensemble and the
external source model

We define the reproducing kernel

K
(c)
m (x , y) =

m−1∑
k=0

1

h
(c)
k

p
(c)
k (x)q

(c)
k (y2)W (c)(x),

and
K̂

(c)
m (x , y) = K

(c)
m (x , y) + K

(c)
m (−x , y).

When c = 0, we have that K̂
(0)
m (x , y) = K

(0)
m (x , y) for x , y > 0 and it is the correlation kernel

of the Muttalib-Borodin ensemble.
The correlation kernel for the eigenvalues of the Hermitian matrix model with external source is

K ext
2n (x , y) =

1

2
K̂

(1)
n (x , y) +

y

2x
K̂

(−1)
n (x , y)

∣∣∣
α→α+1

.
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Pearcey limit in the external source model

Suppose V (x) = x2/2, and a increases from 0.8 to 1 and to 1.5. We have that as the limiting
density of the eigenvalues of M has a transition, from one-cut to two-cut. At a = 1, we
observe the transition, and the cusp behaviour is |x |1/3.
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A remark on equilibrium measure

For the external source model with quadratic potential, Bleher, Kuijlaars and Aptekarev
analyzed it thoroughly in a series of three seminal papers, which initiated the study of random
matrices models by Riemann-Hilbert problems of size larger than 2× 2. A key step is to
construct a vector equilibrium measure.
In our study of Muttalib-Borodin ensemble, we only have a scalar equilibrium measure, namely
the limiting density of particles.
However, in the remark on Page 46 of [Bleher-Kuijlaars, CMP 252 (2004), 43–76], it says:

Remark in [Bleher-Kuijlaars 04]

[F]or a > 1, . . . [i]t is possible to base the asymptotic analysis of the RH problem on the
minimization problem, as done by Deift et al, see [14–16], for the unitarily invariant random
matrix model. However, we will not pursue that here.

Here, this approach is pursued!
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Relation between the external source model and MB ensemble in the sense
of equilibrium measure

If a > 1, then the generalized MB ensemble with θ = 2, V (x) = x2/2 and external
strength a associated to the external source model is asymptotically not different from the
Muttalib-Borodin ensemble on R+. Because the potential V (x)− ax favors the right side,
the part of domain (−∞, 0) is negligible. Hence, we can use the global density of the
Muttalib-Borodin ensemble as the equilibrium measure that is foreseen but not pursued in
[Bleher-Kuijlaars 04].

If a = 1, this idea still works. It is a tiny extension to Bleher and Kuijlaars’s observation,
but a key step for us.

If 0 < a < 1, the bahaviour of the generalized MB ensemble differs a lot from the
Muttalib-Borodin ensemble on R+. This approach fails. We need to use more advanced
techniques like vector equilibrium measure.
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Result that generalizes the Pearcey kernel

For the generalized Muttalib-Borodin ensemble with θ = 2, V (x) = x2/2 and

a = 1 + 2−3/2n−1/2τ , we have the limit of biorthogonal polynomials p
(c)
n (x) and q

(c)
n (y2)

as

p
(c)
n

( z

n3/4

)
∼ ψ(c,τ)(z), q

(c)
n

(
z2

n3/2

)
∼ ψ̃(c,τ)(z),

where ψ(c,τ)(z) is expressed by the first row of the 3× 3 model Riemann-Hilbert problem
in next slide, and ψ̃(c,τ)(z) is expressed by the first column of its inverse.

By summing up all p
(c)
k (x)p

(c)
k (y2), we derive the limiting kernel K

(c)
n (x , y) and

K̂
(c)
n (x , y), and then derive the limiting kernel K ext

2n (x , y) for the external source model.

Hence, limiting formulas for p
(c)
k (x)p

(c)
k (y2), with c = 1 and −1,implies the limiting

formula of K ext
2n (x , y) in principal.

Practically, we have a Christoffel-Darboux formula that can reduce lots of work. But
there is no time to show it.
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Model RHP for generalized MB ensemble
Ψ(ζ) is a 3× 3 vector-valued function on C except for R and rays {arg ζ = ±π/4} and
{arg ζ = ±3π/4}, all rays oriented outward.

1 Ψ+(ζ) = Ψ−(ζ)JΨ(ζ), where

JΨ(ζ) =



1 e−
2α
3
πi 0

0 1 0
0 0 1

 , arg ζ =
π

4
,

1 −e
2α
3
πi 0

0 1 0
0 0 1

 , arg ζ = − π

4
,

1 0 0
0 1 0

0 −ce−
α
3
πi 1

 , arg ζ =
3π

4
,

1 0 0
0 1 0

0 ce
α
3
πi 1

 , arg ζ = − 3π

4
,

0 1 0
1 0 0
0 0 1

 , ζ ∈ R+,

1 0 0
0 0 1
0 1 0

 , ζ ∈ R−.

2 Ψ(ζ) has the boundary conditions similar to that of MB ensemble in transition regime
with θ = 2.
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Integrability and relation to Pearcey kernel

This RHP is a generalization of the θ = 2 model RHP for the MB ensemble on R+ in the
transtion regime, which is the c = 0 special case.

It has almost the same relation to the Boussinesq equation and the Painlevé IV equation.

When c = 1 and α = 0, or c = −1 and α = 1, this RHP can be explicitly comstructed by
integrals in the form of ∫

e
s4

4
−τs2−sζds,

and then the limiting kernel is the Pearcey kernel

1

(2πi)2

∫
ds

∫
dt

e
s4

4
−τs2−sx

e
t4

4
−τ t2−ty

1

s − t
.

It is an analogy that a special RHP for Painlevé XXXIV can be constructed by Airy
function and yields the Airy kernel.
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When the potential function becomes quartic: a = 0 case
Even without the external source, when the potential function becomes quartic, new
phenomenon occurs Suppose the potential is V (x) = x4/4 + tx2/2 (Figures from [Bleher-Its
03]).
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0.4

0.6

0.8
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We again see a transition between one-cut and two-cut, but in the transition regime, the
vanishing of density at 0 is faster than the Pearcey transition: it is like x2.

The local limit is also described by a model RHP, and it is associated to the Painlevé II
equation, studied by Bleher, Its, Claeys, Kuijlaars, Vanlessen, etc.

We naturally expect that this local limit holds for the external source model, at least
when a is small.
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The merge of the Pearcey transition and the Painlevé II transition
Consider the external source model with potential V (x) = x4/4− tx2/2 and the external
source strength a. There is a phase diagram (Figure from [Bleher-Delvaux-Kuijlaars 11]). The
dotted curve is the Pearcey transition, and the solid curve is the Painlevé II transition.

–1

1

2

a

–2 –1 1 2 3 4 5

t

We can prove the Pearcey transition like the quadratic potential case.
We can also compute the limit at the multicritical point where the solid curve and the
dotted curve meet.
Probably we can also prove the Painlevé II transition for the right branch of the solid
curve. (It is work in progress.)
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The model RHP for the multicritical limit
As t =

√
3 + n−

1
2σ and a = 2 · 3−

3
4 − n−

1
2σ + n−

3
4 τ , the limit of the biorthogonal polynomials,

and then the limit of the correlation kernel K ext
2n (x , y), is expressed by the model RHP Ψ(ζ)

such that

Ψ(ζ) is a 3× 3 vector-valued function on C except for R and rays {arg ζ = ±π/4} and
{arg ζ = ±3π/4}, and is has the same jump condition as the model RHP for the
(generalized) Pearcey case. Also its boundary condition at 0 is the same.

Ψ(ζ) = (I +O(ζ−1)) diag(1,−ωζ
1
3 , ω2ζ

2
3 )

×



1 1 1
1 ω ω2

1 ω2 ω

 diag

(
e

3
4
ωζ

4
3−σω2ζ

2
3−τωζ

1
3 , e

3
4
ω2ζ

4
3−σωζ

2
3−τω2ζ

1
3 , e

3
4
ζ
4
3−σζ

2
3−τζ

1
3

)
, ζ ∈ C+,

 1 1 1
ω 1 ω2

ω2 1 ω

 diag

(
e

3
4
ω2ζ

4
3−σωζ

2
3−τω2ζ

1
3 , e

3
4
ωζ

4
3−σω2ζ

2
3−τωζ

1
3 , e

3
4
ζ
4
3−σζ

2
3−τζ

1
3

)
, ζ ∈ C−.
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Integrability

This model RHP is associated to the Boussinesq equation and the samilarity reduction of the
second member of the Boussinesq Hierarchy:

uσσ = 2vστ + uσττ = −1

3
uττττ +

2

3
(u2)ττ ,

uττττ + 2vτττ − (u2)ττ − 4(uv)τ + 2σ(2vτ + uττ ) + τuτ + 2u = 0,

1

3

(
2uτττττ + 3vττττ − 2(u2)τττ − 2uuτττ − 6(uvτ )τ + 6(v2)τ + 4u2uτ

)
+ 2σ

(
vττ +

2

3
uτττ −

1

3
(u2)τ

)
− τvτ − 3v = 0.
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Final remark

Technically, the novelty lies in the proof of vanishing lemmas for the model RHPs, so that the
solvability of the model RHPs are obtained.

Thank you for your attention and happy birthday, Peter!
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