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S Matrix Fluctuations

The S matrix describes transitions between two channels which are

coupled to the states of an N ×N random matrix Hamiltonian H. We

are interested in the large N limit where the number of channels

remains fixed. The stochastic S- matrix is given by

Mahaux-Weidenmüller-1969

S = 1 − 2πiw.(E1 −H + πiw.w†)−1.w†

with w the coupling matrix between the states of H and the channels

of the S-matrix. The fluctuations of S are universal in terms of 〈S〉, and

are given by a non-linear σ-model. JV-Weidenmüller-Zirnbauer-1983

Note that the poles of the S-matrix are in the lower complex half plane

which is implied by causality.
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The QCD Dirac Operator at Nonzero Chemical
Potential

The Random Matrix Representation of the QCD Dirac operator at

nonzero chemical potential µ is given by Jackson-JV-1995,

Stephanov-1996, Osborn-2004

D =




0 iC + µB

iC† + µB† 0





with B and C Gaussian distributed complex random matrices

(non-Hermitian RMT ensemble AIII†. For µ = 0, this ensemble is

known as the chGUE (or AIII) The matrix D has the chiral symmetry.

Γ5DΓ5 = −D,

so that the nonzero eigenvalues are paired as ±λ. The spectral

density around zero on the scale of the average level spacing is

universal, and is described by nonlinear σ model (chiral Lagrangian in

high energy lingo). Kogut-Stephanov-Toublan-JV-Zhitnisky-2000
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The Wilson QCD Dirac Operator

Random Matrix representation of the Wilson Dirac operator

Damgaard-Splittorff-JV-2010, Akemann-Damgaard-Splittorff-JV-2010,

Kieburg-JV -Zafeiropoulos-2011

DW =




aA iC

iC† aB



 , A = A†, B = B†.

Here, A and B are GUE and for a = 0. DW is known as the

non-hermitian ensemble AIII. The lattice spacing is a.

This Dirac operator is pseudo-Hermitian, (Γ5DW )† = Γ5DW with

Γ5 = diag(1, · · · , 1,−1, · · · ,−1). This has important consequences for

the dynamics of the eigenvalues.
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The Non-Hermitian Sachdev-Ye-Kitaev Model

This model is defined by the Hamiltonian

H =
∑

(iMijklψ
L
i ψ

L
j ψ

L
k ψ

L
l − iMijklψ

R
i ψ

R
j ψ

R
k ψ

R
l ) + µ

(

i
∑

k

ψL
k ψ

R
k

)r

.

Maldacena-Qi-2018, García-García-Nosaka-Rosa-JV-2019,

García-García-Jia-Rosa-JV-2021, García-García-Sá-JV-Yin-2024

Here the N operators ψL
k and the N operators ψR

k are a 2N

dimensional Clifford algebra, and the matrix elements Mijkl are

Gaussian distributed.

This model is solvable for N → ∞, and can be solved analytically

when the four-fermion terms are replaced by two-fermion terms.

There is a vast literature on non-Hermitian physics, see review

Ashida-Gong-Ueda-2000, even on the Ginibre ensemble, see review

Byun-Forrester-2025

Non-Hermitian RMT, 2025 – p. 7/57



II. Integrability at Nonzero Chemical Potential

Spectral Density

Darboux Recursion

Factorization

P.J. Forrester and N.S. Witte, Application of the τ -function theory of Painlevé

equations to random matrices: PV , PIII , the LUE, JUE and CUE, Comm.

Pure App. Math. 55 (2002) 679.

E. Kanzieper, Replica Field Theories, Painlevé Transcendents, and Exact

Correlation Functions, Phys. Rev. Lett. 89 (2002) 250201.
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Integrability at Nonzero Chemical Potential

We consider the spectral density of the random matrix model for QCD

at nonzero chemical potential. The spectral density in the complex

plane is given by

ρ(z, z∗) =
∑

k

δ2(z − λk) =
1

π

∑

k

d

dz∗
1

z − λk

=
1

π

d

dz∗
lim
n→0

1

n

d

dz
log

(
∏

k

(z − λk)
n(z∗ − λ∗k)

n

)

We conclude that the spectral density can be written as

ρ(z, z∗) = lim
n→0

1

πn

d

dz∗
d

dz
log
(
detn(z −D)detn(z∗ −D†)

)
.

We will analyze this partition function in the microscopic limit, where

zN , z∗N and µ2N are kept fixed for N → ∞ (weak non-Hermiticity,

(Fyodorov-Khoruzhenko-Sommers-1997)).
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Weak Non-Hermiticity Limit

In this limit, the partition function id determined by the symmetries and

their spontaneous breaking, U(2n) → U(n)× U(n). Itg is give by an

integral over the coset U(2n)/U(n)× U(n), Splittorff-JV-2003

Zn(z, z
∗, µ) = N

∫

U(2n)/U(n)×U(n)

dUe−Nµ2TrUBU†B+ 1
2NTr(MU+MU†)

with

B = diag(1, · · · 1
︸ ︷︷ ︸

n

−1, · · · − 1
︸ ︷︷ ︸

n

), M = diag(z, · · · , z
︸ ︷︷ ︸

n

, z∗, · · · , z∗
︸ ︷︷ ︸

n

)

The integrand does not depend on U(n)× U(n) and we replace the

integral by an integral over U(2n).
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Hänkel Form

With some work, the integral can be written in a Hänkel form

Zn(z, z
∗, µ) =

Dn

(zz∗)n(n−1)
det
[
δkz δ

l
z∗Z1(z, z

∗, µ)
]

k,l=0,1,···,n−1

with

δz = z
d

dz
, δz∗ = z∗

d

dz∗
.

and

Z1(z, z
∗, µ) =

1

π
e2Nµ2

∫ 1

0

dλλe−2Nµ2λ2

I0(λzN)I0(λz
∗N).

Determinants of this type were first considered by Darboux in 1888.
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Darboux Recursion for Hänkel Determinant

Gaston Darboux, 1842-1917

Gaston Darboux, Leçons sur la

théorie générale des surfaces et

les applications geometriques du

calcul infinitésimal, Deuxième Partie,

Gauthier-Villars, Paris, 1889, Livre IV,

Ch. VI, pp. 135-149.
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Toda Lattice Equation

His analysis is also valid in this case and leads to the recursion relation

δzδz∗ logZn(z, z
∗, µ) =

πn

2
(zz∗)2

Zn+1(z, z
∗, µ)Zn−1(z, z

∗, µ)

Z2
n(z, z

∗, µ)
.

This is the Toda lattice equation (Darboux recursion would be a more

appropriate name). It can be proved using the Sylvester identity (see

exercise in Peter’s Book).
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Spectral Density

For the spectral density we obtained

ρ(z, z∗) = lim
n→0

1

πn

d

dz∗
d

dz
logZn(z, z

∗µ).

Using the Darboux recursion we find

ρ(z, z∗) =
π

2
(zz∗)2 lim

n→0

Zn+1(z, z
∗, µ)Zn−1(z, z

∗, µ)

Z2
n(z, z

∗, µ)
.

Since Z0(z, z
∗, µ) = 1 we obtain the compact equation

ρ(z, z∗) =
π

2
(zz∗)2Z1(z, z

∗, µ)Z−1(z, z
∗, µ).

Splittorff-JV-2003

The Z−1(z, z
∗, µ) partition function follows from the symmetry breaking

pattern Gl(4) → U(2)× U(2). The integral over the noncompact

manifold can be worked out analytically.
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Explicit Expressions

Z1(z, z
∗, µ) =

1

π
e2Nµ2

∫ 1

0

dλλe−2Nµ2λ2

I0(λzN)I0(λz
∗N).

Z−1(z, z
∗, µ) =

N3πe−2Nµ2

µ2
e
−

N(z2−(z∗)2)

8µ2 K0

(
Nzz∗

4µ2

)

.

Splittorff-JV-2003

ρ(r) =
1

2π

∫

dφρ(reiφ, re−iφ, µ)

Comparison to numerical result for

an ensemble of 2 million 200 × 200

matrices (N = 200). The asymp-

totic result is obtained from the large

argument approximation of of K0

Akemann-2003
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III. Topology and Random Matrix Theory

Ten Fold Classification and Topology

Spectral Flow

Topology for non-hermitian RMT

Spectral Statistics and Topology
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Topology and Random Matrix Theory

� Topology will be identified with the presence of zero modes.

� The GOE, GUE and GSE have no zero modes

� The ensemble of anti-symmetric Hermitian matrices (D) has

topology. For odd-dimensions there is always a zero eigenvalue.

Anti-selfdual Hermitian ensembles are even dimensional and do

not have zero modes.

� The chiral ensemble CI has symmetric off-diagonal blocks and

cannot have any zero modes.

� The chiral ensemble DIII has anti-symmetric off-diagonal blocks

and can have one zero mode.

� The chiral ensembles, chGOE (BDI), chGUE (AII) and chGSE

(CII), can have any integer number of zero modes.
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Example: the chGUE

The chiral Gaussian Unitary Ensemble (chGUE or AIII) is the

ensemble of Hermitian matrices with chiral symmetry and no

anti-unitary symmetries JV-1994

HΓν
5 + Γν

5H = 0, Γν
5 = diag(1, · · · , 1

︸ ︷︷ ︸

n

,−1, · · · ,−1
︸ ︷︷ ︸

n+ν

).

These matrices have the block form

H =




0 C

C† 0



 , C is n× (n+ ν) matrix

H(0, ψ)T = 0 gives Cψ = 0 which are n linear equation with n+ ν

unknowns, and we can find ν nontrivial solutions. Therefore, the

Hamiltonian has ν zero modes. They are topological because they are

insensitive to changing the nonzero matrix elements. The topology

group is Z.
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Ten Fold Table

RMT Chiral Anti-Unitary ZM

A (GUE) No None No

AI (GOE) No H∗ = H No

AII (GSE) No H∗ = Σ2HΣ2 No

Dν No H∗ = −H Z2

C No H∗ = −Σ2HΣ2 No

AIIIν (chGUE) Γ5HΓ5 = −H None Z

BDIν (chGOE) Γ5HΓ5 = −H H∗ = H Z

CIIν (chGSE) Γ5HΓ5 = −H Σ2HΣ2 = H∗, 2Z

CI Γ5HΓ5 = −H H∗ = −CHC−1 No

DIIIν Γ5HΓ5 = −H H∗ = −Σ2HΣ2 Z2

Kieburg-JV-Zafeiropoulos-2014, Kieburg-Würfel-2017

The admissibility of topology is constrained by non-unitary symmetries.

García-García-Sá-JV-Yin-2023
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Kitaev Versus Zero Modes

Kitaev table of topological insu-

lators Kitaev-2008, Schnyder-Ryu-

Furusaki-Ludwig-2008

RMT Chiral Anti-Unitary ZM

A (GUE) No None No

AI (GOE) No H∗ = H No

AII (GSE) No H∗ = Σ2HΣ2 No

Dν No H∗ = −H Z2

C No H∗ = −Σ2HΣ2 No

AIIIν (chGUE) Γ5HΓ5 = −H None Z

BDIν (chGOE) Γ5HΓ5 = −H H∗ = H Z

CIIν (chGSE) Γ5HΓ5 = −H Σ2HΣ2 = H∗, 2Z

CI Γ5HΓ5 = −H H∗ = −CHC−1 No

DIIIν Γ5HΓ5 = −H H∗ = −Σ2HΣ2 Z2

Non-Hermitian RMT, 2025 – p. 20/57



Example

Consider the matrix

D =







m 0 ia

0 m ib

ia∗ ib∗ m






, Γ1

5 = diag(1, 1,−1)

Γ1
5D =







m 0 ia

0 m ib

−ia∗ −ib∗ −m






.

The secular equation is

det(D − λ1) = (m− λ)(λ2 −m2 − b∗b)− (m− λ)a∗a = 0.

This gives the eigenvalues: λ = m,λ = ±
√
m2 + a∗a+ b∗b.
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Spectral Flow and Topology

chGUE (AIII), 55 x 45

10 lines

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

m

E
k
(m

)

Spectral flow of

Γ
ν
5

(

m id

id† m

)

=

(

1 0

0 −1

)(

m id

id† m

)

=

(

m id

−id† −m

)

.

Because of level repulsion, the

nonzero eigenvalues are shifted by

(ν/2)∆λ.
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Index

� The mode corresponding to the zero eigenvalue crosses the

m-axis, but the other modes do not.

� When we deform the λ(m) = m line, it may cross the m-axis

multiple times. The additional crossings come in pairs, one with a

positive derivative and the other one with a negative derivative.

(m)λ
k
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Topological Index

A topological index can be defined by

ν =
∑

k

∫ ∞

−∞

dmδ(λk(m))
dλk(m)

dm
=

∑

k

∫ ∞

−∞

dm
1

2

d

dm
signλk(m).

A more conventional definition of the index is obtained for

D =




m−iφ id

id† meiφ



 .

Then, detD = eiνφF (|m|), and

ν =
1

2π

∫

dφ
d

dφ

∑

k

arg(λk) =
1

2π

∫

dφ
d

dφ
arg(detD)

=
1

2πi

∫

dφ
d

dφ
log(detD).

Itoh-Iwasaki-Yoshie-1986, Kawabata-Shiozaki-Ryu-2022
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Topology for non-Hermitian RMTs

� For Hermitian matrices, topology is related to zero modes which

can result from anti-symmetric or rectangular blocks

� Non-Hermitian random matrices can be characterized in terms of

1× 1, 2× 2 or 4× 4 block matrices each with or without anti-unitary

symmetries

� For non-Hermitian systems we generalize the concept of topology

to the presence of anti-symmetric or rectangular blocks

� It is not yet known which of the 38 non-Hermitian random matrix

ensembles have topological extensions
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Example: The Ensemble AIII†

This ensemble has the block structure

H =




0 C

D 0





with C and D complex matrices. We can choose C and D to be

n× (n+ ν) and (n+ ν)× n complex rectangular matrices. Then H will

have exactly ν zero modes.

The joint eigenvalue distribution of this model is known even if C and D

do not have the same width James Osborn - 2004 . The joint eigenvalue

distribution for β = 4 is also known Akemann-Bittner-2006.

This ensemble has been studied extensively as a model for QCD at

nonzero chemical potential, see for example

Akemann-Osborn-Splittorff-JV-2005.
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Example: The Ensemble AIII

This random matrix Ensemble has the block structure

H =




aA C

−C† aB





with A and B Hermitian and C a complex iid Gaussian random

variables. The C block can be chosen to be an n× (n+ ν) matrix and.

This ensemble is pseudo-Hermitian,

(Γν
5H)† = Γν

5H.

It was first introduced for the study of the Wilson Dirac operator.

Damgaard-Splittorff-JV-2010, Akemann-Damgaard-Splittorff-JV-2011. The

joint eigenvalue distribution of both H (Kieburg-JV-Zafeiropoulos-2011)

and Γν
5H are known (Akemann-Nagao-2011).
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Spectral Flow

For this RMT we can consider the spectral flow of Γν
5(H +m) as a

function of real m. If

Γν
5(H +m0)φ = 0

for some value of m0, then

Hφ = −m0φ.

Therefore, real eigenvalues of H correspond to intersection of the

spectral flow lines of Γν
5(H +m).

We can also consider the spectral flow as a function of the

non-Hermiticity parameter a,
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Spectral Flow of Real Eigenvalues of AIIIν

Q DW (AIII), 55 x 45

10 lines

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

m

E
k
(m

)

QD ≡ Γ
10

5 D =





aA+m id

−id† −aB −m



 , A
†
= A,B

†
= B.

Akemann-Damgaard-Splittorff-JV-2011, Kieburg-JV-Zafeiropoulos-2012
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Two kinds of real eigenvalues

� Eigenvalues that are connected to spectral flow lines that intersect

the m-axis.

� Real eigenvalues that arise from the collision of a pair of complex

conjugate eigenvalues Note that intersections of flow lines with the

m−axis cannot disappear. So two topological real eigenvalues

cannot collide to become a pair of complex conjugate real

eigenvalues.

The spectral statistics of the two types of real eigenvalues is very

different.
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Spectral Statistics of Non-Topological Real
Eigenvalues

� From Gernot’s talk we learned that there are only 5 bulk statistics

classes for the 38 non-Hermitian random matrix ensembles.

� This raises the question whether we can find other spectral

statistics to distinguish the ensembles

� We already have seen that ensembles with chiral symmetry, can

be characterized by the microscopic spectral density

� Another idea is to look at the distribution of the real eigenvalues.

� It should be clear that topological real eigenvalues have a

distribution that is completely different from real eigenvalues

originating from a complex conjugate pair.
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Spectral Statistics of Non-Topological Real
Eigenvalues

Non-Hermiticity

Real Eigenvalues

We find close eigenvalues and large gaps because of two real

eigenvalues that become a complex conjugate pair and two complex

eigenvalues that join the real axis. This results in characteristic

correlations of the real eigenvalues which are not given by the

Hermitian random matrix ensembles.

Spectral correlation of topological eigenvalues are given by Hermitian

RMTs. García-García-Sá-JV-Yin-2023, 2024
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Zero Modes and Real Eigenvalues

Intersections of the flow lines with the m-axes

Q(DW +mk)φk = 0.

Then

DWφk = −mkφk.

An intersection of a flow line with the m-axis corresponds to a real

eigenvalue of DW . The parity of the intersection number of a flow line

is conserved under continuous deformations of the Hamiltonian, e.g.

by changing the non-Hermiticity parameter. So the total number of flow

line that go from bottom-left to top-right is a topological invariant.
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IV. The Non-Hermitian Sachdev-Ye-Kitaev Model

Model

Spectral Flow

Gap Ratio Distributions

Stability of Topological Modes
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The Non-Hermitian Sachdev-Ye-Kitaev Model

This model is defined by the Hamiltonian

H =
∑

(iMijklψ
L
i ψ

L
j ψ

L
k ψ

L
l − iMijklψ

R
i ψ

R
j ψ

R
k ψ

R
l ) + λ

(

i
∑

k

ψL
k ψ

R
k

)r

.

Maldacena-Qi-2018, García-García-Nosaka-Rosa-JV-2019,

García-García-Jia-Rosa-JV-2021, García-García-Sá-JV-Yin-2024

This model shows emergent topology. Depending on the quantum

numbers block of the Hamiltonian may be rectangular resulting in zero

modes for λ = 0. the number of zero modes is on the order of the

square root of the total size of the matrix, i.e. O(2N/4).
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Spectral flow of Lindbladian SYK
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Left: Spectral flow for N = 14, q = 4, r = 2, λ = 0.1, SL = SR = −1

(AIIIν) . Right: Spectral flow for N = 10, q = 4, r = 1, λ = 0.02, S = 1

(CI−−ν).

Note the significant gap due to the level repulsion of the eigenvalues at

zero.
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Flow of Real Eigenvalues with Non-Hermiticity

N = 10, q = 4, r= 2, � = 1, S = 1
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E
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✂

N = 10, q = 4, r= 2, � = 1, S = -1
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E
k
(✂

)

✂
Spectral flow of the real eigenvalues of L) as a function of the LR

interaction parameter λ for N = 10, q = 4 and S = 1 (left, AIIIν) and

S = −1 (right, AI). The eigenvalues in the left figure are topological

while in the right figure there are no topological real eigenvalues.

García-García-Sá-JV-Yin-2024
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Gap Ratio Distribution
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Gap ratio distribution for the same universality class as in previous

slide.

Note that two different blocks of the same Hamiltonian have different

level statistics, This can happen because the square of an anti-unitary

symmetry depends on the quantum numbers (QSLK)2 = (−1)N/2S.

García-García-Sá-JV-Yin-2023
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Stability of Topological Modes

0 1 2 3 4 5

�

50

125

200

275

N
(E
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Spectral Flow in Absence of Topology
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� Integrability is a powerfui method to obtain the spectral density of

β = 2 random matrix theories.

� Anti-unitary symmetries also determine the topological properties

on non-Hermitian random matrix ensembles.

� We can distinguish topological real eigenvalues and real

eigenvalues that result from a pair of complex conjugate

eigenvalues joining the real axis.

� A gap ∼ ν is induced by level repulsion guarantees the stability of

the the topological modes
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Classification Summary

N (C1K)2 (C2K)2 C1KC2K RMT Matrix Elements

2 1 -1 −iΓ5 GUE Complex

4 -1 -1 −Γ5 GSE Quaternion

6 -1 1 −iΓ5 GUE Complex

8 1 1 Γ5 GOE Real

10 1 -1 −iΓ5 GUE Complex

12 -1 -1 Γ5 GSE Quaternion

Table 1: (Anti-)Unitary symmetries of the SYK Hamiltonian and the cor-

responding RMT. The symmetries are periodic in N modulo 8 (Bott pe-

riodicity). You-Ludwig-Xu-2016, Garcia-Garcia-JV-2016

A similar classification exists for supersymmetric SYK models.

Fu-Gaiotto-Maldacena-Sachdev-2017, Li-Liu-Xin-Zhou-2017,

Kanazawa-Wettig-2017
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Upper Bound for Lyapunov Exponent

Lyapunov exponent λ

∆(t) ∼ ∆(0)eλt

Energy-time “uncertainty relation”

∆t∆E ≥ ~

2
∆t ∼ 1/λ, ∆E ∼ πkT

So we have the bound

λ ≤ 2πkT

~

Maldacena-Shenker-Stanford-2015

Of the same type as the η/S bound by

Son.

kT

∆(0)

~∆(0)eλ t
∆( )t

Divergence of trajectories in a

stadium at temperature T
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Maximum Range of Agreement with RMT
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Number variance after unfolding configuration by configuration. The

total number of eigenvalues for N = 32 is 32,768.
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