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Abstract

In this talk, | will first explain my motivaton from probability
theory and free probability. Subsequently, we introduce the class of
generalized Meixner-type free gamma distributions. This class can
be represented as a mixture of Marchenko-Pastur distribution in

the sense of free multiplicative convolution.

This work is based on joint work with Yuki Ueda (Hokkaido

University of Education, Asahikawa).
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Motivation: the gamma distribution 1

The gamma distribution has the density function as follow:

v(t0)(dx) = 0'51“1( )xt’le’gl(olw)dx, t,0 > 0.

t: shape parameter, 0: mean parameter.

e The class of Gamma distributions include the chi-squera,
exponential, Erlang distribuitons
e Huge range of application: queuing theory, non-life insurance,

finance, econometrics, Bayesian statistics, life testing,....

e

t=1,2,6 and 8 =1/2 t=2and 0 =2,4,6

|
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Motivation: the gamma distribution 2 (infinite divisiblity(ID))

o nisID L vneN, Iy, €P st =,
wis ID iff 31a > 0,7 € R, and Lévy meas. v s.t.

2 )
i(z) = exp [_a; +inz+ /(700 -5 (e —1— ile[l,l])(x)v(dx)} :

e We can construct Lévy processes from ID dist.

e All gamma distributions are ID:

0 = (1) = [ [ -t dx] .

Moreover it is selfdecomposable(SD).
uis SD &hovee (0,1), Jpc s.t. = Dc(p) * pc, where
De(p)(B) = p(3B)

o 7(t,0) = v(1,0)", Do(7(t,1)) = 7(t6)




Motivation: the beta-gamma relation 1

Assume that Xy, X5 are indep. and X ~ ¥(B1,1), X2 ~ (B2, 1).

° Xl}ile and X; + X, are independent and Xl)ile has the beta
distribution:
1 _ _
fox (x0) = g PN (1 — )Py (%)

X +X B(ﬁlfﬁZ)



Motivation: the beta-gamma relation 1

Assume that Xy, X, are indep. and X; ~ ¥(B1,1), Xo ~ v(B2,1).

° % has the beta distribution of second kind or beta prime
distribution:

fiy () = B(ﬁf,ﬁz)xﬁl-l/u +x)PrH1g  (x)

Br=1,15,3and B, = 4 Br=4and By =1,2,3



Free probability




Rough skech of NCP worlds

° ’Free prob. ‘ = ’ non-commutative prob. ‘ 4 ’free indep.

e There are some beautiful correspondences between prob. and
free prob. (or non-commutative prob.)
e the Gauss distribution <+ the semi-circule distribution
e (Voiculescu) The theory on the sum of free indep. r.v.
limit theorems: C.L.T. < free C.L.T.
e (Speicher, Biane, Barndroff-Nielsen and Thorbjgrnsen)

The theory on stochastic processes:

Brownian motion < free Brownian motion,
Lévy processes <+ free Lévy processes.
e (Biane and Speicher, Peccati, Kemp, Nourdin and Speicher)
Stochastic analysis:
Wiener Chaos <> Wigner Chaos,
Malliavin calculus and Stein methods.

e Contribution to physics??: Schwinger-Dyson equation, ...



Free independence, Free additive convolution

Non-commutative probability: a probability model with
non-commutativity for the product of random variables.
XY #YX
Free probability = non-commutative probability + free
independence
K=TRor R; :=[0,00).
P(K) := {p | Borel prob. meas. on K}
H: Free additive convolution
X,Y: free independent r.v. distributed as. X ~ pu, Y ~ p.
uHp is the distribution of X + Y.
u is free infinitely divisible if Vn € N, Ju, € P sit. p = pn.
I(B) := {u | free infinitely divisible on R}

e Analytic method (the Cauchy transform, R-transform,

subordination)
e Combinatorial method (free cumulant sequences)
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Analytic tools

e The Cauchy transform G, : C* — C~ of u € P(R);

1
Gy(z) ::/]Rz_ty(dt), zeCt

( E/]Rzkydt zec+>.

e The reciprocal Cauchy transform F, : C* — C* of
p € P(R);

It is the Pick function.

11



Pick function

e M; := {finite Borel meas. on R}
Theorem 2.1
F:C* — C* is analytic with
lim @ =1.
Yy—00 zy

< JucP(R)st. F=F, onC*
< JlueR,pe Msst. F=F,onC*.

© 1+t
—a+z+/ t+zz zeCt
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Analytic tools 2

e [, is univalent on I, 5. So that inverse function Fﬁ_l) of F,

can be defined.
Thp:={z=x+iy:y> B |x| <ay}

1 -1

X

y=—a"'x y=u

y=_p

Ol Re

& > 0,8 > 0 depend on the distribution .
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Analytic tools 2
e [, is univalent on I, 5. So that inverse function F;_D of F

can be defined.

Top:={z=x+iy:y> B, |x| <ay}

e The R-transform R, : C~ = Cof p € P;
Ru(z) = zF}§71>(z’1) -1, z7le Lop
e u€P(R)is FID <= 3J1a > 0,7 € R,v: Lévy measure on

R\ {0} s.t.
1
Ry(z) = az + vz + R\(0} (1 = = Zﬂl[l,l}(ﬂ) v(dt),
(1)
zeC .
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Example: semi-circle distribution

In (1), we set a =02, v =0and v=0: From definition and

Ry (w) = ?w?,
we have 9
-1 o
Fs<(0,32)(w) = + w.

Then we set w = Fg(g2)(z) and obtain

o2

2= — 4 Fyge)(2) <= Fsio0n)(2)2 —2Fu(z) + % = 0.

Fs(0,02) (2)
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Example: semi-circle distribution

In(1),weseta:(72,'y:Oand1/:0:

o2

z=——~ +Fs02)(2) & Fs(OIOZ)(Z)Z —zF,(z) + 0> = 0.

Fs(0,02)(2)

Finally, we get its Cauchy transform:

z+ V22 — 407 z— V22 — 402
Fs(0,02)(2) = 5 Gs(o02)(2) = 5

By Stieltjes inversion formula, the density function of S(0,0?) is

f(x) = —lhmImG u(x +iy) = \/4(72 — X21[_p4,201

T yl0
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Example: the standard semi-circle distribution

Conversely we can compute the Cauchy transform of semi-circle
distribution by its moment sequence. First, we can compute easily

1
my = /IR xkE V4 — x5 5(x)

P =iCatlp) k=2p
0 k=2p+1

Here we know the recursive formula

p
Cat(p+1) = )_ Cat(i)Cat(p — i),
i=0
and we can compute its generating function and Cauchy transform
via
- = 1—+v1—422
Y. z2'my, = ) z*'Cat(n) = —ZZ
n=0 n=0 2z
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Example: Marchenko-Pastur distribution(free Poisson distribution)

Let's consider the following:

1
Rﬂ/\,l (Z) = Az+ /IR\{O} (1 e —1- Ztﬂ[—l,l}@)) )\51 (dt),
Az

=15 =, ) -1
So we have
_ Aw
F7§[)\,11>(w) = _1 w

: 1-A)—+/(z+1-2)2—4
Its the F-transform is Fr, (z) = i 2Z+ iy Thus, we
(z41=A)++/ (z+1-1)2—4z
2z :
By Stieltjes inversion formula, the density function of 71, 1 is

7y 1 (dx) =max{1l — A,0}dp(dx)
1 /42— (x —1—A)2

obtain the Cauchy transform G, (z) =

tox X L v, a4 vay (*)dx.
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Compare with classical probability theory

Proposition 2.2

u € I(B)(u € I(x)) has Lévy-Khintchine representation: there
exist unique a > 0, v € R, and Lévy meas. v such that

Ru(z) = azz+'yz+/]R <1 —1xz

(log (/ e’zxy(dx)> = 72(722 +iyz+ /]R (eiz" —-1- ile[,u](x)) v(dx).)

—1—xzl_qy (x)) v(dx).

Remark 2.3
a is the semi-circle part, 7y is shift part. (a,v,7) is called free
characteristic triplet.
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Bercovici-Pata bijection

A I(x*) by I(8) is a map from p € I(x) with the characteristic
triplet (a,v,7) to A(u) € I(H) with the free characteristic triplet
(a,v,7).

It is called Bercovici-Pata bijection.

the normal distr. — the semi-circle distr.
the Poisson distr. — the Marchenko-Pastur distr.

the Cauchy distr. — the Cauchy distr.

18



Main object and results




The Meixner distributions 1

Let v;,), be a probability measure whose Cauchy transform is given
by

L dx) = ! 2
/]RZ_sz,a,b( x) - s ( )
Z_
s+b
z—a—
s+b
z—a-—
_ (s+2b)z+sa—sy/(z—a)2—4(s+D)
B 2(bz2 + saz + s2) ’
©)

where a € R, b > —1 and s > 0. The three-parameter measure
Vs,qp is called the centered free Meixner distribution.

19



The Meixner distributions 2

Integral representation for the R-transform of v;, ) is given by

2
z
Ry,,,(2z) = /]R = xzs W, p(x)dx,

where

1
wa,h(x) = % 4b — (x — a)zl[a72\/5,u+2\/5](x)

is the density of Wigner's semicircle law with mean a € R and
variance b > 0.

20



The Meixner-type free gamma distributions

The Meixner-type free gamma distribution is given by

. 1 t9k9,1(x) . t
Ry(t0(2) = /(O’oo) (1 — - 1) 18 dx = (1-V1-402),

where t > 0 is the time (shape) parameter, 6 > 0 is the scale
parameter and the function kg , is

at —x)(x —a-
kG,A(X) — \/( 271—2); )1(a7,a+)<X), A >1,

where a* := 0(+/A £ 1)?, respectively. We can easily see that
e 7(t,0) is freely infinitely divisible for all ¢,6 > 0;

e 7(t,0) = 1n(1,0)% for all t,0 > 0;
° 17(t1,9) EHT](tz,Q) = T](tl + tz,@) for all t1,t5,60 > 0.

zeC™

21
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Generalized Meixner-type free gamma distributions

The family {ptgr :t,6 > 0,A > 1} of probability measures whose
R-transforms are defined by

. 1 tkgl)\(x) _
Ry, (2) = /(O,oo) ( 1> de, zeC

1—zx

;1 +0(1—A)z—+/(1+0(1—1)z)2—40z

26 ;
We call the measures ;g generalized Meixner-type free gamma
distributions.

Remark 3.1

If we replace t, A by t0, 1 respectively, we get the Meixner-type
free gamma distributions 1(t, ).

It is completely different from free gamma distribution by
Pérez-Abreu and S.
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Atom and density

Proposition 3.2
Consider t,60 > 0 and A > 1. Then

g (dx) =max {O, M} 5

WG =)

2m0x(x +t(A —1))

where a® := 0(A +1) +t+2,/0A(0 + t).

1[“—/0‘4-] (x)dx,

23



Distributional properties
Theorem 3.3
Lett,6 > 0 and A > 1. Then the following properties hold.

(1) The measure u; g, is freely selfdecomposable if and only if
A = 1. In addition, it is unimodal if and only if
1<A<14t/6.

)

Heor = Dya—1) <7T1, r N (771,1+é)<1>) =1 W, A>1

(A1)

Here, g = G(Ail) and 71p ) Is the probability measure defined by

g A (dx) = max{0,1 — A} + kg 5 (x) dux.

(B) Hipi+t/0 = Meoa X TT11. Uipi4t/6 IS @ free compound Poisson
distributions. 24



The S-transform 1

The S—transforms of p are defined by

z+1__ .
Sp(z): . ‘Yp](z), ze‘Pp(zCﬂ,

where ‘I’E] (z) is the inverse of ¥, (z) = f(0,00) 2= p(dx) with respect to composition.
Proposition 3.4

For p1 € P+ and p; € Py, which are not dy, there exist & > 0 and > 0 such that

Sp1Rpy (z) = S5p,(2)Sp,(2), zE€Y¥p, (ic™) O‘YPZ(iC+),

Sy (2) = %S‘” <§> ‘
Ry (zSu(2)) =z

For ¢ > 0, the dilation operator D, on P is defined by D.(y)(B) := p (%B) for any
1
Borel set B on R, where ?B ={xeR;1xeB}.

We have

1
SDC(]J)(Z) = ?SI‘(Z)'
2



The S-transform 2

1

S7T9,,\ (Z) - m/

114) is the pushforward of u by the map (0,00) 3 x — x<, for all
¢ # 0 and for all probability measures p on (0, 00).

1

S[l<’1> (Z) = m, % (& (—1,0)

S (- =———=0A—-1-2), € (—1,0).
né/}‘w(z) Sm)/\(—z — 1) ( Z) z ( )

z in a neighborhood of (—1+ 7y ,({0}),0).

26



Proof

From direct computation,

s (- Rmm@ ___ t—be
He.o 2 t(t+0(A —1)z)
(5
t(A—1) gy +2 \6
= Z
Dt(H)<n1 | 1)x(n1/1+i)< 1>>( )
Recall
Sor®p, (2) = Spy (2)Sp, (2); SDC(y)(Z) %S}l (2)
1
Sy (2) = 9(/\+z);
() = 5 (iz —5 =00 -1-2)

27



Moreover,

#or = Dyao1) (7T1 e X (7T1,1+g)<_1>)

7B(A—1)

— (-1)
Dipoayo Dy (v B0y ) )

-1
= 71,4 (”t%,1+5)< >

= anl,q X Ko,

28



Relation with Yoshida’s results

Yoshida introduced the free beta prime distribution
fB'(a,b) = m, R,

Theorem 3.5

Let us considera > 0 and b > 1.

(1) We have fB'(a,b) = p o atb-1.

bl(b 1)2 a

(2) The free Lévy measure of fB'(a,b) is given by

where u = = 1)2 and v =

(3) The measure fp'(a,b) is not freely selfdecomposable. In
addition, it is unimodal if and only if a > 1.

29



Potential

We can compute the Potential function:
. . [
(Hu)(x) == el—lgloRe (Gu(x +ie)) = 5V (x),  x € supp(p).

For t,6 > 0 and A > 1, we consider the potential functions V; g\
defined by

2—1—E lo x—l—ﬁ A=1
6) 8" " ox’ —
t
Vt,B,A(X) o= 1-— 9(/\_1)> logx
tA

From this potential function, we can consider the Gibbs measure:

1
pro(dx) = Z exp{—Vipr(x)}dx for t,6>0 A>1,

t6,A

30



Explicit form

For A =1,
()

7x’(2+5)e’%dx, (4)
r(1+4)

pto1(dx) =

It is the inverse gamma distribution with parameter (a, B):

Hay (1/0)* ! exp(—p /).

2T (x4 t(A— 1)) ED

dx) = —
ptrg,/\( X) B( t

(5)
A> 1

It is the beta prime distribution or beta distribution of 2nd kind.

[
(A1) dx’
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Classical counterpart

Theorem 3.6
Let us considert,0 > 0 and A > 1.

(1) The measure p;g ) is selfdecomposable, and therefore it is
unimodal.

(2) For A > 1, we have

t £\
pror = Dia—1) | ¥ <9()L—1)'1> ® <1 + 9,1>

= Pt6,1 @Y (9()\1%—1)’9(/\;1)) .

(3) In particular, p;0111/9 = pre1 ® ¥(1,1). Hence the measure

Pto1+t/0 belongs to the class of mixture of exponential
distributions.

32



Free entropy maximizer

Theorem 3.7
Fort,0 >0and1 <A <1+1t/6, we have

Hioa = argmax{Zy,, (1) : j is 2 p. m. on (0,00)},

where 2y, (1) is the (Voiculescu's) free entropy:

Ev,0, (1) = [ 10g lx = yln(dx)p(dy) — [ Vipa(x)p(dx).

Corollary 3.8

In particular, for a,b > 1, the measure fB'(a,b) is the unique
maximizer of the free entropy Xy, ,, where

Vop(x) = (1 —a)logx+ (a+b)log(l+x), x > 0.
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The graph of potential V,, and its 2nd derivative

Voo (x) = —logx +4log(1+ x), x > 0.

1 4
/!
Vys(x) = 2 P
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Thank you for your attention

and
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