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Given Q : C → R the associated random normal matrix model
consists of all complex n × n normal matrices M, distributed by

dPn(M) =
1

Zn
e−nTrQ(M)dM, dM =

∏
1≤j ,k≤n

dA(Mjk)

where dA(x + iy) = 1
πdxdy is the (normalized) standard area measure.

We will assume Q to be C 2 and

lim inf
|z|→∞

Q(z)

log |z |2
> 1.

The eigenvalues describe the locations of n particles in a 2D Coulomb
gas at inverse temperature 2, confined by the potential Q.

The corresponding eigenvalues z1, . . . , zn ∈ C of M are distributed as

dPn(z1, . . . , zn) =
1

Zn

∏
1≤i<j≤n

|zi − zj |2
n∏

j=1

e−nQ(zj )dA(zj).
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The eigenvalues form a determinantal point process: the k-point
correlation functions can be expressed as ρn,k(z1, . . . , zk) =

n!

(n − k)!

∫
Cn−k

1

Zn

∏
1≤i<j≤n

|zi − zj |2
n∏

j=1

e−nQ(zj ) dA(zk+1) · · · dA(zn)

= det
(
Kn(zi , zj)

)
1≤i ,j≤k

, k = 1, . . . , n,

where Kn : C× C → C is the correlation kernel.

We make the Hermitian symmetric choice:

Kn(z ,w) = e−
1
2
n(Q(z)+Q(w))

n−1∑
j=0

pj(z)pj(w),

where the pj : C → C are planar orthogonal polynomials
(with degree j and positive leading coefficient)∫

C
pj(z)pk(z)e

−nQ(z)dA(z) = δj ,k , j , k = 0, 1, . . .
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The eigenvalues accumulate on a compact set SQ called the droplet.

lim
n→∞

1

n
ρn,1(z , z) = lim

n→∞

1

n
Kn(z , z) =


∆Q(z), z ∈ S̊Q ,

1
2∆Q(z), z ∈ ∂SQ ,

0, z ∈ Sc
Q ,

where ∆ = ∂z∂z = 1
4(∂

2
x + ∂2

y ) denotes the quarter Laplacian.

In fact, we have 1
nKn(z , z)dA(z) → dµ∗

Q(z) in distribution where
dµ∗

Q(z) = χSQ (z)∆Q(z)dA(z) minimizes the (energy) functional

IQ(µ) =

∫∫
C2

log
1

|z − w |
dµ(z)dµ(w) +

∫
C
Q(z)dµ(z)

over all compactly supported Borel probability measures on C.
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(bulk) When z0 ∈ S̊Q , the Ginibre kernel arises as a scaling limit

lim
n→∞

1

n∆Q(z0)
Kn

(
z0 +

ξ√
n∆Q(z0)

, z0 +
η√

n∆Q(z0)

)
≡ e−

1
2
|ξ|2− 1

2
|η|2−ξη.

(edge) When z0 ∈ ∂SQ , the erfc kernel arises as a scaling limit

lim
n→∞

1

n∆Q(z0)
Kn

(
z0 +

ξn⃗(z0)√
n∆Q(z0)

, z0 +
ηn⃗(z0)√
n∆Q(z0)

)

≡ 1

2
e−

1
2
|ξ|2− 1

2
|η|2−ξη erfc

(
ξ + η√

2

)
.

Here n⃗(z0) is the outward unit normal vector on ∂SQ at z0.

Edge scaling limit proved in generality by Hedenmalm and Wennman
‘21.

Edge scaling limit first appeared in Forrester and Honner 1999.
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The focus of this talk: Counting statistics.

This involves linear statistics over the eigenvalues z1, . . . , zn ∈ C of M

Σn[f ] = f (z1) + . . .+ f (zn).

The case of smooth linear statistics is understood in generality
(Ameur, Hedenmalm, Makarov 2011, 2015).

For counting statistics we consider for some A ⊂ C the test function

f (z) = χA(z) =

{
1, z ∈ A,

0, z ̸∈ A,
.

N
(n)
A := Σn[χA] counts the number of eigenvalues in A.

Question 1: given a set A, how many eigenvalues of M are in A?

Question 2: how does this number fluctuate?
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In general the expectation and variance of Σn[f ] is given by

EΣn[f ] =

∫
C
f (z)Kn(z , z)dA(z)

Var Σn[f ] =
1

2

∫
C2

(f (z)− f (w))2|Kn(z ,w)|2dA(z)dA(w).

Hence

lim
n→∞

1

n
EN(n)

A =

∫
A∩SQ

∆Q(z)dA(z).

For counting statistics the number variance is given by

VarN
(n)
A =

1

2

∫
C2

|χA(z)− χA(w)||Kn(z ,w)|2dA(z)dA(w)

=

∫
A

∫
Ac

|Kn(z ,w)|2dA(z)dA(w).
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Lacroix-A-Chez-Toine, Majumdar and Schehr ‘19 showed for
Q(z) = |z |2 (Ginibre ensemble) that for A = {z ∈ C : |z | ≤ a}

lim
n→∞

1√
n
VarN

(n)
A =

a√
π

√
∆Q(a).

Here 0 < a < 1 is fixed (and SQ = D).

They also showed what happens in the case of a microscopic dilation
of the droplet SQ = D.
Let A = An(δ) = {z ∈ C : |z | ≤ 1 + δ√

2n∆Q(1)
} for δ ∈ R, then

lim
n→∞

1√
n
VarN

(n)
An(δ)

=
f (δ)√

π
, f (δ) =

√
2π

∫ ∞

δ

erfc(t) erfc(−t)

4
dt

This was shown to be universal in the rotational symmetric case by
Akemann, Byun, Ebke ‘23. Assumptions: Q(z) = g(|z |) where
(rg ′(r))′ > 0, g ′(1) = 2 and rg ′(r) → 0 as r ↓ 0.
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It was proved by Lin ‘24 and by Levi, Marzo and Ortega-Cerdà ‘24
that for the Ginibre ensemble Q(z) = |z |2 one has

lim
n→∞

1√
n
VarN

(n)
A =

1

2π
√
π

∫
∂∗A

dH 1(z) =
1

2π
√
π

H 1(∂∗A)

for any Borel set A ⊂ C, where dH 1(z) is the one-dimensional
Hausdorff measure on the measure theoretic boundary ∂∗A.

The measure theoretic boundary is defined explicitly by ∂∗A =({
z ∈ C : lim

r↓0

λ2(A ∩ B(z , r))

πr2
= 1

}
∪
{
z ∈ C : lim

r↓0

λ2(A ∩ B(z , r))

πr2
= 0

})c

When A has a C 1 boundary, ∂∗A is the same as the topological
boundary ∂A, and dH 1(∂∗A) is just the usual arc length differential.
The limit exists if and only if A has finite perimeter.
Heuristically, one can roughly argue the result from the peaked
behavior of |Kn(z ,w)| ≈ n∆Q(z)e−n∆Q(z)|z−w |2 around the diagonal
z = w (while in the bulk S̊Q) and the formula

VarN
(n)
A =

∫
A

∫
Ac

|Kn(z ,w)|2dA(z)dA(w).
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Theorem (Akemann - Duits - M. ‘24)

Consider a random normal matrix model with a C 2 potential Q which is
assumed to be real analytic in a neighborhood of SQ . Fix a compact set
K ⊂ S̊Q and assume that ∆Q > 0 on K. Then we have

VarN
(n)
A ≍

√
n|∂A|

as n → ∞ for all convex sets A ⊂ K with a C 2 boundary, where the
implied constants depend only on Q and K.
When ∆Q is constant on K we have for such sets A that as n → ∞

VarN
(n)
A =

√
n

2π
√
π
|∂A|

√
∆Q|K + O(1).
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Theorem (Akemann - Duits - M. ‘24)

(elliptic Ginibre ensemble) Consider Q(z) = (|z |2 − τ Re(z2))/(1− τ2)
with fixed 0 ≤ τ < 1 and let n⃗(z) denote the outward unit normal vector
at z on ∂SQ . Define

A = An(S) =


SQ ∪

{
[z , z + δ√

2n∆Q(z)
n⃗(z)] : z ∈ ∂SQ

}
, δ ≥ 0,

SQ \
{
[z + δ√

2n∆Q(z)
n⃗(z), z ] : z ∈ ∂SQ

}
, δ < 0.

Then we have

lim
n→∞

1√
n
VarN

(n)
A =

1

2π
√
π
f (δ)|∂A|

√
∆Q(z),

f (δ) =
√
2π

∫ ∞

δ

erfc(t) erfc(−t)

4
dt.

SQ =

{
z ∈ C :

(
Re z
1+τ

)2
+
(

Im z
1−τ

)2
≤ 1

}
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Bulk Theorem (Marzo - M. - Ortega-Cerdà ‘25)

Consider a random normal matrix model with a potential Q that is C 2,
real analytic on S̊Q and ∆Q > 0 on SQ . For any Borel set A ⋐ S̊Q we have

lim
n→∞

1√
n
VarN

(n)
A =

1

2π
√
π

∫
∂∗A

√
∆Q(z)dH 1(z),

where ∂∗A is the measure theoretic boundary of A.

Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 12 / 20



For any δ ∈ R, we define the following tubular neighborhood of ∂SQ

Sδ
Q,n = {hn(z , t) : z ∈ ∂SQ , |t| < |δ|},

where

hn(z , t) = z +
1√

2n∆Q(z)
n⃗(z)t.

Here n⃗(z) denotes the outward unit normal vector on ∂SQ at z .

Now consider our counting statistic N
(n)
A for

A = An(δ) =

{
SQ ∪ Sδ

Q,n, δ ≥ 0,

SQ \ Sδ
Q,n, δ < 0.
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Edge Theorem (Marzo - M. - Ortega-Cerdà ‘25)

Consider a random normal matrix model with a potential Q that is C 2 on
C, and real analytic and strictly subharmonic on a neighborhood of SQ .
Assume that SQ is simply connected and that it has a smooth boundary.
Then

lim
n→∞

1√
n
VarN

(n)
An(δ)

=
f (δ)

2π
√
π

∫
∂SQ

√
∆Q(z) dω∞

Sc
Q
(z)

uniformly for δ ∈ R in compact sets, where ω∞
Sc
Q
is the harmonic measure

at ∞, and

f (δ) =
√
2π

∫ ∞

δ

erfc(t) erfc(−t)

4
dt.

The harmonic measure at ∞ corresponding to Sc
Q is given by

dω∞
Sc
Q
(z) = |ϕ′(z)|dH 1(z),

where ϕ is any conformal map from Sc
Q to Dc

satisfying ϕ(∞) = ∞.

Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 14 / 20



How to prove the Bulk Theorem?

Indicator functions are functions of bounded variation

On C the space of functions of bounded variation is defined as

BV (C) = {f ∈ L1(C) : [f ]BV < ∞},

where [f ]BV denotes the total variation of f :

[f ]BV = sup

{∫
C
f (z) div ϕ(z) dA(z) : ϕ ∈ C∞

c (C,R2) with ∥ϕ∥L∞ ≤ 1

}
.

Any f ∈ BV (C) can be approximated by functions in C∞
c (C) in the

following way. There exists a sequence (fj)
∞
j=1 in C∞

c (C) such that

lim
j→∞

∥f − fj∥L1 = 0 and lim
j→∞

∫
C
|∇fj(z)| dA(z) = [f ]BV .

(In general, it is not possible to approximate a BV function f by a
sequence fj ∈ C∞

c (C) in W 1,1 norm.)

Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 15 / 20



How to prove the Bulk Theorem?

Indicator functions are functions of bounded variation

On C the space of functions of bounded variation is defined as

BV (C) = {f ∈ L1(C) : [f ]BV < ∞},

where [f ]BV denotes the total variation of f :

[f ]BV = sup

{∫
C
f (z) div ϕ(z) dA(z) : ϕ ∈ C∞

c (C,R2) with ∥ϕ∥L∞ ≤ 1

}
.

Any f ∈ BV (C) can be approximated by functions in C∞
c (C) in the

following way. There exists a sequence (fj)
∞
j=1 in C∞

c (C) such that

lim
j→∞

∥f − fj∥L1 = 0 and lim
j→∞

∫
C
|∇fj(z)| dA(z) = [f ]BV .

(In general, it is not possible to approximate a BV function f by a
sequence fj ∈ C∞

c (C) in W 1,1 norm.)

Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 15 / 20



How to prove the Bulk Theorem?

Indicator functions are functions of bounded variation

On C the space of functions of bounded variation is defined as

BV (C) = {f ∈ L1(C) : [f ]BV < ∞},

where [f ]BV denotes the total variation of f :

[f ]BV = sup

{∫
C
f (z) div ϕ(z) dA(z) : ϕ ∈ C∞

c (C,R2) with ∥ϕ∥L∞ ≤ 1

}
.

Any f ∈ BV (C) can be approximated by functions in C∞
c (C) in the

following way. There exists a sequence (fj)
∞
j=1 in C∞

c (C) such that

lim
j→∞

∥f − fj∥L1 = 0 and lim
j→∞

∫
C
|∇fj(z)| dA(z) = [f ]BV .

(In general, it is not possible to approximate a BV function f by a
sequence fj ∈ C∞

c (C) in W 1,1 norm.)

Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 15 / 20



It turns out that (structure theorem of De Giorgi 1955)

[χA]BV =

∫
∂∗A

dH 1(z) = H 1(∂∗A).

The strategy is to use the sequence (fj)
∞
j=1 to approximate the

variance

VarN
(n)
A =

1

2

∫
C2

|χA(z)− χA(w)||Kn(z ,w)|2dA(z)dA(w)

≈ 1

2

∫
C2

|fj(z)− fj(w)||Kn(z ,w)|2dA(z)dA(w)

≈ 1

2π
√
π
∥
√
∆Q∇fj∥L1 ,

for large n, and then take j → ∞.

See Le Doussal and Schehr ‘25 for the rotational symmetric case.
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How to prove the Edge Theorem?

The number variance is essentially dictated by the boundary ∂SQ .

VarN
(n)
A =

∫
A

∫
Ac

|Kn(z ,w)|2dA(z)dA(w)

≈
∫
∂SQ

∫
∂SQ ,

d(z0,w0)≤
√

log n
n

∫ δ

−ϵn

∫ ϵn

δ

|ϕ′(z0)||ϕ′(w0)|
n
√
∆Q(z0)∆Q(w0)

×

∣∣∣∣∣Kn

(
z0 +

n⃗(z0)ξ√
n∆Q(z0)

,w0 +
n⃗(w0)η√
n∆Q(w0)

)∣∣∣∣∣
2

dξdηdH 1(w0)dH 1(w0).

where d(z0,w0) = | log(ϕ(z0)ϕ(w0))| and ϵn = const.×
√
log n.

We have to understand the behavior of |Kn(z ,w)| when z and w are

in the vicinity of the boundary (order O(
√

log n
n ) from ∂SQ).

A distinction has to be made between z0 and w0 close to each other

(z0 − w0 = O(
√

log n
n )) and the case where they are not.
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Lemma (Marzo - M. - Ortega-Cerdà ‘25)

Assume the conditions on Q from the Edge Theorem.
Let z0,w0 ∈ ∂SQ and denote by n⃗(z0) and n⃗(w0) the outward unit normal
vectors on ∂SQ at z0 and w0. Then we have as n → ∞ that

1

n
√
∆Q(z0)∆Q(w0)

∣∣∣∣∣Kn

(
z0 +

n⃗(z0)ξ√
n∆Q(z0)

,w0 +
n⃗(w0)η√
n∆Q(w0)

)∣∣∣∣∣ =
(
1

2
+ O(

log3 n√
n

)) exp

(
−1

2
|ξ − η|2 − n∆Q(z0)

(log(ϕ(z0)ϕ(w0)))
2

2|ϕ′(z0)|2

)
∣∣∣∣∣erfc

(
ξ + η√

2
+
√

n∆Q(z0)
log(ϕ(z0)ϕ(w0))√

2|ϕ′(z0)|

)∣∣∣∣∣
uniformly for |z0 − w0| = O(

√
log n
n ) and ξ, η = O(

√
log n), where ϕ is the

conformal map from Sc
Q to Dc

such that ϕ(∞) = ∞ and ϕ′(∞) > 0.

Generalizes Hedenmalm-Wennman ‘21 where z0 = w0 and ξ, η = O(1).
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Lemma (Marzo - M. - Ortega-Cerdà ‘25)

Consider a random normal matrix model with a potential Q that is C 2 on
C, and real analytic and strictly subharmonic on a neighborhood of SQ .
Assume SQ is simply connected and has a smooth boundary. As n → ∞

1√
n

∣∣∣∣∣Kn

(
z0 +

n⃗(z0)ξ√
n∆Q(z0)

,w0 +
n⃗(w0)η√
n∆Q(w0)

)∣∣∣∣∣
≤ CQ

∣∣∣∣∣S
(
z0 +

n⃗(z0)ξ√
n∆Q(z0)

,w0 +
n⃗(w0)η√
n∆Q(w0)

)∣∣∣∣∣ e−(Re ξ)2e−(Re η)2 ,

uniformly for z0,w0 ∈ ∂SQ and ξ, η = O(
√
log n), where CQ > 0, and S

is the Szegő kernel associated with ∂SQ .

S (z ,w) =
1

2π

√
ϕ′(z)

√
ϕ′(w)

ϕ(z)ϕ(w)− 1
,

Related result by Ameur and Cronvall ‘23 with condition |z0 − w0| ≥ ϵ.
Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 19 / 20



B. Lacroix-A-Chez-Toine, S. N. Majumdar, and G.
Schehr
Rotating trapped fermions in two dimensions and
the complex Ginibre ensemble: Exact results for
the entanglement entropy and number variance.
Phys. Rev. A 99, 021602(R) (2019).

G. Akemann, S.-S. Byun, and M. Ebke
Universality of the number variance in rotational
invariant two-dimensional Coulomb gases.
J. Phys. A: Math Theor. 56(49), 495202 (2023).

M. Levi, J. Marzo and J. Ortega-Cerdà
Linear statistics of determinantal point processes
and norm representations.
Int. Mat. Res. Not. 2024(19), 12869-12903
(2024).

Akemann, Duits, Molag
Fluctuations in various regimes of non-Hermiticity
and a holographic principle.
arXiv preprint. arXiv:2412.15854 (2024).

HAPPY BIRTHDAY
PETER!

THANK YOU!

Leslie Molag (Carlos III University Madrid) Universality for Counting Statistics of RNMs August 12, 2025 20 / 20


