Universality for Fluctuations of Counting Statistics of Random Normal Matrices

Joint work with Jordi Marzo and Joaquim Ortega-Cerdà arXiv:2508.04386 (and Gernot Akemann and Maurice Duits, arXiv:2412.15854)

Leslie Molag

Carlos III University Madrid

August 12, 2025

$$d\mathscr{P}_n(M) = \frac{1}{\mathscr{Z}_n} e^{-n\operatorname{Tr} Q(M)} dM, \qquad dM = \prod_{1 \leq j,k \leq n} dA(M_{jk})$$

where $dA(x+iy) = \frac{1}{\pi} dx dy$ is the (normalized) standard area measure.

$$d\mathscr{P}_n(M) = \frac{1}{\mathscr{Z}_n} e^{-n\operatorname{Tr} Q(M)} dM, \qquad dM = \prod_{1 \leq j,k \leq n} dA(M_{jk})$$

where $dA(x+iy) = \frac{1}{\pi} dxdy$ is the (normalized) standard area measure.

• We will assume Q to be C^2 and

$$\liminf_{|z|\to\infty}\frac{Q(z)}{\log|z|^2}>1.$$

$$d\mathscr{P}_n(M) = \frac{1}{\mathscr{Z}_n} e^{-n\operatorname{Tr} Q(M)} dM, \qquad dM = \prod_{1 \leq j,k \leq n} dA(M_{jk})$$

where $dA(x+iy) = \frac{1}{\pi} dxdy$ is the (normalized) standard area measure.

• We will assume Q to be C^2 and

$$\liminf_{|z|\to\infty}\frac{Q(z)}{\log|z|^2}>1.$$

• The eigenvalues describe the locations of n particles in a 2D Coulomb gas at inverse temperature 2, confined by the potential Q.

$$d\mathscr{P}_n(M) = \frac{1}{\mathscr{Z}_n} e^{-n\operatorname{Tr} Q(M)} dM, \qquad dM = \prod_{1 \leq j,k \leq n} dA(M_{jk})$$

where $dA(x+iy) = \frac{1}{\pi} dx dy$ is the (normalized) standard area measure.

• We will assume Q to be C^2 and

$$\liminf_{|z|\to\infty}\frac{Q(z)}{\log|z|^2}>1.$$

- The eigenvalues describe the locations of n particles in a 2D Coulomb gas at inverse temperature 2, confined by the potential Q.
- The corresponding eigenvalues $z_1,\ldots,z_n\in\mathbb{C}$ of M are distributed as

$$d\mathbb{P}_n(z_1,\ldots,z_n) = \frac{1}{Z_n} \prod_{1 \le i \le n} |z_i - z_j|^2 \prod_{i=1}^n e^{-nQ(z_i)} dA(z_i).$$

• The eigenvalues form a determinantal point process: the k-point correlation functions can be expressed as $\rho_{n,k}(z_1,\ldots,z_k)=$

$$\frac{n!}{(n-k)!} \int_{\mathbb{C}^{n-k}} \frac{1}{Z_n} \prod_{1 \le i < j \le n} |z_i - z_j|^2 \prod_{j=1}^n e^{-nQ(z_j)} dA(z_{k+1}) \cdots dA(z_n)
= \det \left(\mathscr{K}_n(z_i, z_j) \right)_{1 < i, j < k}, \qquad k = 1, \dots, n,$$

where $\mathcal{K}_n : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is the correlation kernel.

• The eigenvalues form a determinantal point process: the k-point correlation functions can be expressed as $\rho_{n,k}(z_1,\ldots,z_k)=$

$$\frac{n!}{(n-k)!} \int_{\mathbb{C}^{n-k}} \frac{1}{Z_n} \prod_{1 \le i < j \le n} |z_i - z_j|^2 \prod_{j=1}^n e^{-nQ(z_j)} dA(z_{k+1}) \cdots dA(z_n)
= \det \left(\mathscr{K}_n(z_i, z_j) \right)_{1 < i, j < k}, \qquad k = 1, \dots, n,$$

where $\mathscr{K}_n: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is the correlation kernel.

• We make the Hermitian symmetric choice:

$$\mathscr{K}_n(z,w) = e^{-\frac{1}{2}n(Q(z)+Q(w))} \sum_{j=0}^{n-1} p_j(z) \overline{p_j(w)},$$

where the $p_j: \mathbb{C} \to \mathbb{C}$ are planar orthogonal polynomials (with degree j and positive leading coefficient)

$$\int_{\mathbb{C}} p_j(z) \overline{p_k(z)} e^{-nQ(z)} dA(z) = \delta_{j,k}, \qquad j,k = 0,1,\dots$$

ullet The eigenvalues accumulate on a compact set S_Q called the droplet.

$$\lim_{n\to\infty}\frac{1}{n}\rho_{n,1}(z,z)=\lim_{n\to\infty}\frac{1}{n}\mathcal{K}_n(z,z)=\left\{\begin{array}{ll}\Delta Q(z), & z\in\mathring{S}_Q,\\ \frac{1}{2}\Delta Q(z), & z\in\partial S_Q,\\ 0, & z\in S_Q^c,\end{array}\right.$$

where $\Delta = \partial_z \overline{\partial}_z = \frac{1}{4} (\partial_x^2 + \partial_y^2)$ denotes the quarter Laplacian.

ullet The eigenvalues accumulate on a compact set S_Q called the droplet.

$$\lim_{n\to\infty} \frac{1}{n} \rho_{n,1}(z,z) = \lim_{n\to\infty} \frac{1}{n} \mathcal{K}_n(z,z) = \begin{cases} \Delta Q(z), & z\in \mathring{S}_Q, \\ \frac{1}{2} \Delta Q(z), & z\in \partial S_Q, \\ 0, & z\in S_Q^c, \end{cases}$$

where $\Delta = \partial_z \overline{\partial}_z = \frac{1}{4} (\partial_x^2 + \partial_y^2)$ denotes the quarter Laplacian.

• In fact, we have $\frac{1}{n}\mathcal{K}_n(z,z)dA(z) \to d\mu_Q^*(z)$ in distribution where $d\mu_Q^*(z) = \chi_{S_Q}(z)\Delta Q(z)dA(z)$ minimizes the (energy) functional

$$I_Q(\mu) = \iint_{\mathbb{C}^2} \log rac{1}{|z-w|} d\mu(z) d\mu(w) + \int_{\mathbb{C}} Q(z) d\mu(z)$$

over all compactly supported Borel probability measures on $\mathbb C.$

• (bulk) When $z_0 \in \mathring{\mathcal{S}}_Q$, the Ginibre kernel arises as a scaling limit

$$\lim_{n\to\infty} \frac{1}{n\Delta Q(z_0)} \mathcal{K}_n \left(z_0 + \frac{\xi}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta}{\sqrt{n\Delta Q(z_0)}} \right)$$

$$= e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi\overline{\eta}}$$

ullet (bulk) When $z_0 \in \mathring{\mathcal{S}}_Q$, the Ginibre kernel arises as a scaling limit

$$\lim_{n\to\infty} \frac{1}{n\Delta Q(z_0)} \mathcal{K}_n \left(z_0 + \frac{\xi}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta}{\sqrt{n\Delta Q(z_0)}} \right)$$
$$\equiv e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi\overline{\eta}}.$$

• (edge) When $z_0 \in \partial S_Q$, the erfc kernel arises as a scaling limit

$$\begin{split} \lim_{n \to \infty} \frac{1}{n\Delta Q(z_0)} \mathscr{K}_n \left(z_0 + \frac{\xi \vec{n}(z_0)}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta \vec{n}(z_0)}{\sqrt{n\Delta Q(z_0)}} \right) \\ &\equiv \frac{1}{2} e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi \overline{\eta}} \operatorname{erfc} \left(\frac{\xi + \overline{\eta}}{\sqrt{2}} \right). \end{split}$$

Here $\vec{n}(z_0)$ is the outward unit normal vector on ∂S_Q at z_0 .

ullet (bulk) When $z_0 \in \mathring{\mathcal{S}}_Q$, the Ginibre kernel arises as a scaling limit

$$\lim_{n\to\infty} \frac{1}{n\Delta Q(z_0)} \mathcal{K}_n \left(z_0 + \frac{\xi}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta}{\sqrt{n\Delta Q(z_0)}} \right)$$

$$\equiv e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi \overline{\eta}}.$$

• (edge) When $z_0 \in \partial S_Q$, the erfc kernel arises as a scaling limit

$$\begin{split} \lim_{n \to \infty} \frac{1}{n\Delta Q(z_0)} \mathscr{K}_n \left(z_0 + \frac{\xi \vec{n}(z_0)}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta \vec{n}(z_0)}{\sqrt{n\Delta Q(z_0)}} \right) \\ &\equiv \frac{1}{2} e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi \overline{\eta}} \operatorname{erfc} \left(\frac{\xi + \overline{\eta}}{\sqrt{2}} \right). \end{split}$$

Here $\vec{n}(z_0)$ is the outward unit normal vector on ∂S_Q at z_0 .

 Edge scaling limit proved in generality by Hedenmalm and Wennman '21. ullet (bulk) When $z_0 \in \mathring{\mathcal{S}}_Q$, the Ginibre kernel arises as a scaling limit

$$\lim_{n\to\infty} \frac{1}{n\Delta Q(z_0)} \mathscr{K}_n \left(z_0 + \frac{\xi}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta}{\sqrt{n\Delta Q(z_0)}} \right)$$

$$\equiv e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi\overline{\eta}}.$$

• (edge) When $z_0 \in \partial S_Q$, the erfc kernel arises as a scaling limit

$$\begin{split} \lim_{n \to \infty} \frac{1}{n\Delta Q(z_0)} \mathscr{K}_n \left(z_0 + \frac{\xi \vec{n}(z_0)}{\sqrt{n\Delta Q(z_0)}}, z_0 + \frac{\eta \vec{n}(z_0)}{\sqrt{n\Delta Q(z_0)}} \right) \\ &\equiv \frac{1}{2} e^{-\frac{1}{2}|\xi|^2 - \frac{1}{2}|\eta|^2 - \xi \overline{\eta}} \operatorname{erfc} \left(\frac{\xi + \overline{\eta}}{\sqrt{2}} \right). \end{split}$$

Here $\vec{n}(z_0)$ is the outward unit normal vector on ∂S_Q at z_0 .

- Edge scaling limit proved in generality by Hedenmalm and Wennman '21.
- Edge scaling limit first appeared in Forrester and Honner 1999.

• The focus of this talk: Counting statistics.

- The focus of this talk: Counting statistics.
- This involves linear statistics over the eigenvalues $z_1, \ldots, z_n \in \mathbb{C}$ of M

$$\Sigma_n[f] = f(z_1) + \ldots + f(z_n).$$

- The focus of this talk: Counting statistics.
- This involves linear statistics over the eigenvalues $z_1, \ldots, z_n \in \mathbb{C}$ of M

$$\Sigma_n[f] = f(z_1) + \ldots + f(z_n).$$

 The case of smooth linear statistics is understood in generality (Ameur, Hedenmalm, Makarov 2011, 2015).

- The focus of this talk: Counting statistics.
- This involves linear statistics over the eigenvalues $z_1, \ldots, z_n \in \mathbb{C}$ of M

$$\Sigma_n[f] = f(z_1) + \ldots + f(z_n).$$

- The case of smooth linear statistics is understood in generality (Ameur, Hedenmalm, Makarov 2011, 2015).
- For counting statistics we consider for some $A \subset \mathbb{C}$ the test function

$$f(z) = \chi_A(z) = \begin{cases} 1, & z \in A, \\ 0, & z \notin A, \end{cases}$$

- The focus of this talk: Counting statistics.
- This involves linear statistics over the eigenvalues $z_1,\ldots,z_n\in\mathbb{C}$ of M

$$\Sigma_n[f] = f(z_1) + \ldots + f(z_n).$$

- The case of smooth linear statistics is understood in generality (Ameur, Hedenmalm, Makarov 2011, 2015).
- ullet For counting statistics we consider for some $A\subset\mathbb{C}$ the test function

$$f(z) = \chi_A(z) = \begin{cases} 1, & z \in A, \\ 0, & z \notin A, \end{cases}$$

• $N_A^{(n)} := \sum_n [\chi_A]$ counts the number of eigenvalues in A.

- The focus of this talk: Counting statistics.
- This involves linear statistics over the eigenvalues $z_1,\ldots,z_n\in\mathbb{C}$ of M

$$\Sigma_n[f] = f(z_1) + \ldots + f(z_n).$$

- The case of smooth linear statistics is understood in generality (Ameur, Hedenmalm, Makarov 2011, 2015).
- For counting statistics we consider for some $A \subset \mathbb{C}$ the test function

$$f(z) = \chi_A(z) = \begin{cases} 1, & z \in A, \\ 0, & z \notin A, \end{cases}$$

- $N_A^{(n)} := \Sigma_n[\chi_A]$ counts the number of eigenvalues in A.
- Question 1: given a set A, how many eigenvalues of M are in A?

- The focus of this talk: Counting statistics.
- This involves linear statistics over the eigenvalues $z_1,\ldots,z_n\in\mathbb{C}$ of M

$$\Sigma_n[f] = f(z_1) + \ldots + f(z_n).$$

- The case of smooth linear statistics is understood in generality (Ameur, Hedenmalm, Makarov 2011, 2015).
- ullet For counting statistics we consider for some $A\subset\mathbb{C}$ the test function

$$f(z) = \chi_A(z) = \begin{cases} 1, & z \in A, \\ 0, & z \notin A, \end{cases}$$

- $N_A^{(n)} := \Sigma_n[\chi_A]$ counts the number of eigenvalues in A.
- Question 1: given a set A, how many eigenvalues of M are in A?
- Question 2: how does this number fluctuate?

• In general the expectation and variance of $\Sigma_n[f]$ is given by

$$\mathbb{E}\Sigma_n[f] = \int_{\mathbb{C}} f(z)\mathscr{K}_n(z,z)dA(z)$$
 $\operatorname{Var}\Sigma_n[f] = rac{1}{2}\int_{\mathbb{C}^2} (f(z)-f(w))^2 |\mathscr{K}_n(z,w)|^2 dA(z)dA(w).$

• In general the expectation and variance of $\Sigma_n[f]$ is given by

$$\mathbb{E}\Sigma_n[f] = \int_{\mathbb{C}} f(z)\mathscr{K}_n(z,z)dA(z)$$
 $\operatorname{Var}\Sigma_n[f] = rac{1}{2}\int_{\mathbb{C}^2} (f(z)-f(w))^2 |\mathscr{K}_n(z,w)|^2 dA(z)dA(w).$

Hence

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}N_A^{(n)}=\int_{A\cap S_Q}\Delta Q(z)dA(z).$$

• In general the expectation and variance of $\Sigma_n[f]$ is given by

$$\begin{split} \mathbb{E} \Sigma_n[f] &= \int_{\mathbb{C}} f(z) \mathscr{K}_n(z,z) dA(z) \\ \text{Var } \Sigma_n[f] &= \frac{1}{2} \int_{\mathbb{C}^2} (f(z) - f(w))^2 |\mathscr{K}_n(z,w)|^2 dA(z) dA(w). \end{split}$$

Hence

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}N_A^{(n)}=\int_{A\cap S_Q}\Delta Q(z)dA(z).$$

• For counting statistics the number variance is given by

$$\operatorname{Var} N_A^{(n)} = \frac{1}{2} \int_{\mathbb{C}^2} |\chi_A(z) - \chi_A(w)| |\mathscr{K}_n(z, w)|^2 dA(z) dA(w)$$
$$= \int_A \int_{A^c} |\mathscr{K}_n(z, w)|^2 dA(z) dA(w).$$

• Lacroix-A-Chez-Toine, Majumdar and Schehr '19 showed for $Q(z) = |z|^2$ (Ginibre ensemble) that for $A = \{z \in \mathbb{C} : |z| \le a\}$

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\,\mathsf{Var}\,\mathit{N}_{A}^{(n)}=\frac{\mathit{a}}{\sqrt{\pi}}\sqrt{\Delta\mathit{Q}(\mathit{a})}.$$

Here 0 < a < 1 is fixed (and $S_Q = \overline{\mathbb{D}}$).

• Lacroix-A-Chez-Toine, Majumdar and Schehr '19 showed for $Q(z) = |z|^2$ (Ginibre ensemble) that for $A = \{z \in \mathbb{C} : |z| \le a\}$

$$\lim_{n o \infty} rac{1}{\sqrt{n}} \operatorname{Var} N_A^{(n)} = rac{a}{\sqrt{\pi}} \sqrt{\Delta Q(a)}.$$

Here 0 < a < 1 is fixed (and $S_Q = \overline{\mathbb{D}}$).

• They also showed what happens in the case of a microscopic dilation of the droplet $S_Q=\overline{\mathbb{D}}$.

Let
$$A = A_n(\delta) = \{z \in \mathbb{C} : |z| \le 1 + \frac{\delta}{\sqrt{2n\Delta Q(1)}}\}$$
 for $\delta \in \mathbb{R}$, then

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_{A_n(\delta)}^{(n)}=\frac{f(\delta)}{\sqrt{\pi}},\quad f(\delta)=\sqrt{2\pi}\int_{\delta}^{\infty}\frac{\operatorname{erfc}(t)\operatorname{erfc}(-t)}{4}dt$$

• Lacroix-A-Chez-Toine, Majumdar and Schehr '19 showed for $Q(z) = |z|^2$ (Ginibre ensemble) that for $A = \{z \in \mathbb{C} : |z| \le a\}$

$$\lim_{n o \infty} rac{1}{\sqrt{n}} \operatorname{Var} N_A^{(n)} = rac{a}{\sqrt{\pi}} \sqrt{\Delta Q(a)}.$$

Here 0 < a < 1 is fixed (and $S_Q = \overline{\mathbb{D}}$).

• They also showed what happens in the case of a microscopic dilation of the droplet $S_Q=\overline{\mathbb{D}}$.

Let
$$A = A_n(\delta) = \{z \in \mathbb{C} : |z| \le 1 + \frac{\delta}{\sqrt{2n\Delta Q(1)}}\}$$
 for $\delta \in \mathbb{R}$, then

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_{A_n(\delta)}^{(n)}=\frac{f(\delta)}{\sqrt{\pi}},\quad f(\delta)=\sqrt{2\pi}\int_{\delta}^{\infty}\frac{\operatorname{erfc}(t)\operatorname{erfc}(-t)}{4}dt$$

• This was shown to be **universal** in the rotational symmetric case by Akemann, Byun, Ebke '23. Assumptions: Q(z) = g(|z|) where (rg'(r))' > 0, g'(1) = 2 and $rg'(r) \rightarrow 0$ as $r \downarrow 0$.

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_A^{(n)}=\frac{1}{2\pi\sqrt{\pi}}\int_{\partial_*A}d\mathscr{H}^1(z)=\frac{1}{2\pi\sqrt{\pi}}\mathscr{H}^1(\partial_*A)$$

for any Borel set $A \subset \mathbb{C}$, where $d\mathcal{H}^1(z)$ is the one-dimensional Hausdorff measure on the measure theoretic boundary $\partial_* A$.

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_A^{(n)}=\frac{1}{2\pi\sqrt{\pi}}\int_{\partial_*A}d\mathscr{H}^1(z)=\frac{1}{2\pi\sqrt{\pi}}\mathscr{H}^1(\partial_*A)$$

for any Borel set $A \subset \mathbb{C}$, where $d\mathscr{H}^1(z)$ is the one-dimensional Hausdorff measure on the measure theoretic boundary ∂_*A .

• The measure theoretic boundary is defined explicitly by $\partial_* A =$

$$\left(\left\{z\in\mathbb{C}:\lim_{r\downarrow 0}\frac{\lambda_2(A\cap B(z,r))}{\pi r^2}=1\right\}\cup\left\{z\in\mathbb{C}:\lim_{r\downarrow 0}\frac{\lambda_2(A\cap B(z,r))}{\pi r^2}=0\right\}\right)^c$$

When A has a C^1 boundary, $\partial_* A$ is the same as the topological boundary ∂A , and $d\mathscr{H}^1(\partial_* A)$ is just the usual arc length differential.

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_A^{(n)}=\frac{1}{2\pi\sqrt{\pi}}\int_{\partial_*A}d\mathscr{H}^1(z)=\frac{1}{2\pi\sqrt{\pi}}\mathscr{H}^1(\partial_*A)$$

for any Borel set $A \subset \mathbb{C}$, where $d\mathscr{H}^1(z)$ is the one-dimensional Hausdorff measure on the measure theoretic boundary ∂_*A .

• The measure theoretic boundary is defined explicitly by $\partial_* A =$

$$\left(\left\{z\in\mathbb{C}: \lim_{r\downarrow 0}\frac{\lambda_2(A\cap B(z,r))}{\pi r^2}=1\right\}\cup\left\{z\in\mathbb{C}: \lim_{r\downarrow 0}\frac{\lambda_2(A\cap B(z,r))}{\pi r^2}=0\right\}\right)^c$$

When A has a C^1 boundary, $\partial_* A$ is the same as the topological boundary ∂A , and $d\mathcal{H}^1(\partial_* A)$ is just the usual arc length differential.

• The limit exists if and only if A has finite perimeter.

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_A^{(n)}=\frac{1}{2\pi\sqrt{\pi}}\int_{\partial_*A}d\mathscr{H}^1(z)=\frac{1}{2\pi\sqrt{\pi}}\mathscr{H}^1(\partial_*A)$$

for any Borel set $A \subset \mathbb{C}$, where $d\mathcal{H}^1(z)$ is the one-dimensional Hausdorff measure on the measure theoretic boundary $\partial_* A$.

• The measure theoretic boundary is defined explicitly by $\partial_* A =$

$$\left(\left\{z\in\mathbb{C}:\lim_{r\downarrow 0}\frac{\lambda_2(A\cap B(z,r))}{\pi r^2}=1\right\}\cup\left\{z\in\mathbb{C}:\lim_{r\downarrow 0}\frac{\lambda_2(A\cap B(z,r))}{\pi r^2}=0\right\}\right)^c$$

When A has a C^1 boundary, $\partial_* A$ is the same as the topological boundary ∂A , and $d\mathcal{H}^1(\partial_* A)$ is just the usual arc length differential.

- The limit exists if and only if A has finite perimeter.
- Heuristically, one can roughly argue the result from the peaked behavior of $|K_n(z,w)| \approx n\Delta Q(z)e^{-n\Delta Q(z)|z-w|^2}$ around the diagonal z=w (while in the bulk \mathring{S}_Q) and the formula

$$\operatorname{Var} N_A^{(n)} = \int_A \int_{A^c} |\mathscr{K}_n(z,w)|^2 dA(z) dA(w).$$

Theorem (Akemann - Duits - M. '24)

Consider a random normal matrix model with a C^2 potential Q which is assumed to be real analytic in a neighborhood of S_Q . Fix a compact set $K \subset \mathring{S}_Q$ and assume that $\Delta Q > 0$ on K. Then we have

$$\operatorname{Var} N_A^{(n)} \asymp \sqrt{n} |\partial A|$$

as $n \to \infty$ for all convex sets $A \subset K$ with a C^2 boundary, where the implied constants depend only on Q and K.

When ΔQ is constant on K we have for such sets A that as $n \to \infty$

$$\operatorname{\sf Var} {\sf N}_{\sf A}^{(n)} = rac{\sqrt{n}}{2\pi\sqrt{\pi}} |\partial {\sf A}| \sqrt{\Delta {\sf Q}|_{\sf K}} + \mathscr{O}(1).$$

Theorem (Akemann - Duits - M. '24)

(elliptic Ginibre ensemble) Consider $Q(z)=(|z|^2-\tau\operatorname{Re}(z^2))/(1-\tau^2)$ with fixed $0\leq \tau<1$ and let $\vec{n}(z)$ denote the outward unit normal vector at z on ∂S_Q . Define

$$A = A_n(S) = \begin{cases} S_Q \cup \left\{ [z, z + \frac{\delta}{\sqrt{2n\Delta Q(z)}} \vec{n}(z)] : z \in \partial S_Q \right\}, & \delta \ge 0, \\ S_Q \setminus \left\{ [z + \frac{\delta}{\sqrt{2n\Delta Q(z)}} \vec{n}(z), z] : z \in \partial S_Q \right\}, & \delta < 0. \end{cases}$$

Then we have

$$\lim_{n \to \infty} rac{1}{\sqrt{n}} \operatorname{Var} N_A^{(n)} = rac{1}{2\pi\sqrt{\pi}} f(\delta) |\partial A| \sqrt{\Delta Q(z)},$$
 $f(\delta) = \sqrt{2\pi} \int_{\delta}^{\infty} rac{\operatorname{erfc}(t) \operatorname{erfc}(-t)}{4} dt.$

$$S_Q = \left\{z \in \mathbb{C} : \left(\frac{\operatorname{Re} z}{1+ au}
ight)^2 + \left(\frac{\operatorname{Im} z}{1- au}
ight)^2 \leq 1
ight\}$$

Bulk Theorem (Marzo - M. - Ortega-Cerdà '25)

Consider a random normal matrix model with a potential Q that is C^2 , real analytic on \mathring{S}_Q and $\Delta Q>0$ on S_Q . For any Borel set $A \in \mathring{S}_Q$ we have

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_A^{(n)}=\frac{1}{2\pi\sqrt{\pi}}\int_{\partial_*A}\sqrt{\Delta Q(z)}d\mathscr{H}^1(z),$$

where $\partial_* A$ is the measure theoretic boundary of A.

ullet For any $\delta \in \mathbb{R}$, we define the following tubular neighborhood of $\partial \mathcal{S}_{\mathcal{Q}}$

$$S_{Q,n}^{\delta} = \{h_n(z,t) : z \in \partial S_Q, |t| < |\delta|\},$$

where

$$h_n(z,t) = z + \frac{1}{\sqrt{2n\Delta Q(z)}}\vec{n}(z)t.$$

Here $\vec{n}(z)$ denotes the outward unit normal vector on ∂S_Q at z. Now consider our counting statistic $N_A^{(n)}$ for

$$A = A_n(\delta) = \begin{cases} S_Q \cup S_{Q,n}^{\delta}, & \delta \geq 0, \\ S_Q \setminus S_{Q,n}^{\delta}, & \delta < 0. \end{cases}$$

Edge Theorem (Marzo - M. - Ortega-Cerdà '25)

Consider a random normal matrix model with a potential Q that is C^2 on \mathbb{C} , and real analytic and strictly subharmonic on a neighborhood of S_Q . Assume that S_Q is simply connected and that it has a smooth boundary. Then

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}\operatorname{Var} N_{A_n(\delta)}^{(n)}=\frac{f(\delta)}{2\pi\sqrt{\pi}}\int_{\partial S_Q}\sqrt{\Delta Q(z)}\,d\omega_{S_Q^c}^{\infty}(z)$$

uniformly for $\delta \in \mathbb{R}$ in compact sets, where $\omega_{S_Q^c}^\infty$ is the harmonic measure at ∞ , and

$$f(\delta) = \sqrt{2\pi} \int_{\delta}^{\infty} \frac{\operatorname{erfc}(t)\operatorname{erfc}(-t)}{4} dt.$$

The harmonic measure at ∞ corresponding to S_Q^c is given by

$$d\omega_{S_{0}^{c}}^{\infty}(z) = |\phi'(z)|d\mathcal{H}^{1}(z),$$

where ϕ is any conformal map from S_O^c to $\overline{\mathbb{D}}^c$ satisfying $\phi(\infty) = \infty$.

How to prove the Bulk Theorem?

Indicator functions are functions of bounded variation

How to prove the Bulk Theorem?

- Indicator functions are functions of bounded variation
- ullet On ${\mathbb C}$ the space of functions of bounded variation is defined as

$$BV(\mathbb{C}) = \{ f \in L^1(\mathbb{C}) : [f]_{BV} < \infty \},$$

where $[f]_{BV}$ denotes the total variation of f:

$$[f]_{BV} = \sup \left\{ \int_{\mathbb{C}} f(z) \operatorname{div} \phi(z) \, dA(z) : \phi \in C_c^{\infty}(\mathbb{C}, \mathbb{R}^2) \text{ with } \|\phi\|_{L^{\infty}} \leq 1
ight\}.$$

How to prove the Bulk Theorem?

- Indicator functions are functions of bounded variation
- ullet On ${\mathbb C}$ the space of functions of bounded variation is defined as

$$BV(\mathbb{C}) = \{ f \in L^1(\mathbb{C}) : [f]_{BV} < \infty \},$$

where $[f]_{BV}$ denotes the total variation of f:

$$[f]_{BV} = \sup \left\{ \int_{\mathbb{C}} f(z) \operatorname{div} \phi(z) \, dA(z) : \phi \in C_c^{\infty}(\mathbb{C}, \mathbb{R}^2) \text{ with } \|\phi\|_{L^{\infty}} \leq 1 \right\}.$$

• Any $f \in BV(\mathbb{C})$ can be approximated by functions in $C_c^{\infty}(\mathbb{C})$ in the following way. There exists a sequence $(f_j)_{j=1}^{\infty}$ in $C_c^{\infty}(\mathbb{C})$ such that

$$\lim_{j\to\infty} \|f-f_j\|_{L^1} = 0$$
 and $\lim_{j\to\infty} \int_{\mathbb{C}} |\nabla f_j(z)| \, dA(z) = [f]_{BV}.$

(In general, it is not possible to approximate a BV function f by a sequence $f_i \in C_c^{\infty}(\mathbb{C})$ in $W^{1,1}$ norm.)

• It turns out that (structure theorem of De Giorgi 1955)

$$[\chi_A]_{BV} = \int_{\partial_* A} d\mathscr{H}^1(z) = \mathscr{H}^1(\partial_* A).$$

• It turns out that (structure theorem of De Giorgi 1955)

$$[\chi_A]_{BV} = \int_{\partial_* A} d\mathscr{H}^1(z) = \mathscr{H}^1(\partial_* A).$$

• The strategy is to use the sequence $(f_j)_{j=1}^{\infty}$ to approximate the variance

$$\begin{aligned} \operatorname{Var} N_A^{(n)} &= \frac{1}{2} \int_{\mathbb{C}^2} |\chi_A(z) - \chi_A(w)| |\mathscr{K}_n(z,w)|^2 dA(z) dA(w) \\ &\approx \frac{1}{2} \int_{\mathbb{C}^2} |f_j(z) - f_j(w)| |\mathscr{K}_n(z,w)|^2 dA(z) dA(w) \\ &\approx \frac{1}{2\pi\sqrt{\pi}} \|\sqrt{\Delta Q} \nabla f_j\|_{L^1}, \end{aligned}$$

for large n, and then take $i \to \infty$.

• It turns out that (structure theorem of De Giorgi 1955)

$$[\chi_A]_{BV} = \int_{\partial_* A} d\mathscr{H}^1(z) = \mathscr{H}^1(\partial_* A).$$

• The strategy is to use the sequence $(f_j)_{j=1}^{\infty}$ to approximate the variance

$$\begin{aligned} \operatorname{Var} N_A^{(n)} &= \frac{1}{2} \int_{\mathbb{C}^2} |\chi_A(z) - \chi_A(w)| |\mathscr{K}_n(z,w)|^2 dA(z) dA(w) \\ &\approx \frac{1}{2} \int_{\mathbb{C}^2} |f_j(z) - f_j(w)| |\mathscr{K}_n(z,w)|^2 dA(z) dA(w) \\ &\approx \frac{1}{2\pi\sqrt{\pi}} \|\sqrt{\Delta Q} \nabla f_j\|_{L^1}, \end{aligned}$$

for large n, and then take $i \to \infty$.

• See Le Doussal and Schehr '25 for the rotational symmetric case.

How to prove the Edge Theorem?

ullet The number variance is essentially dictated by the boundary ∂S_Q .

$$\operatorname{Var} N_{A}^{(n)} = \int_{A} \int_{A^{c}} |\mathscr{K}_{n}(z, w)|^{2} dA(z) dA(w)$$

$$\approx \int_{\partial S_{Q}} \int_{d(z_{0}, w_{0}) \leq \sqrt{\frac{\log n}{n}}} \int_{-\epsilon_{n}}^{\delta} \int_{\delta}^{\epsilon_{n}} \frac{|\phi'(z_{0})| |\phi'(w_{0})|}{n \sqrt{\Delta Q(z_{0}) \Delta Q(w_{0})}} \times$$

$$\left| \mathscr{K}_{n} \left(z_{0} + \frac{\vec{n}(z_{0})\xi}{\sqrt{n\Delta Q(z_{0})}}, w_{0} + \frac{\vec{n}(w_{0})\eta}{\sqrt{n\Delta Q(w_{0})}} \right) \right|^{2} d\xi d\eta d\mathscr{H}^{1}(w_{0}) d\mathscr{H}^{1}(w_{0}).$$

where $d(z_0, w_0) = |\log(\phi(z_0)\overline{\phi(w_0)})|$ and $\epsilon_n = \text{const.} \times \sqrt{\log n}$.

How to prove the Edge Theorem?

ullet The number variance is essentially dictated by the boundary ∂S_Q .

$$\begin{aligned} \text{Var } N_A^{(n)} &= \int_A \int_{A^c} |\mathscr{K}_n(z,w)|^2 dA(z) dA(w) \\ &\approx \int_{\partial S_Q} \int_{d(z_0,w_0) \leq \sqrt{\frac{\log n}{n}}} \int_{-\epsilon_n}^{\delta} \int_{\delta}^{\epsilon_n} \frac{|\phi'(z_0)| |\phi'(w_0)|}{n \sqrt{\Delta Q(z_0) \Delta Q(w_0)}} \times \\ &\left| \mathscr{K}_n \left(z_0 + \frac{\vec{n}(z_0) \xi}{\sqrt{n \Delta Q(z_0)}}, w_0 + \frac{\vec{n}(w_0) \eta}{\sqrt{n \Delta Q(w_0)}} \right) \right|^2 d\xi d\eta d\mathscr{H}^1(w_0) d\mathscr{H}^1(w_0). \end{aligned}$$

where $d(z_0, w_0) = |\log(\phi(z_0)\overline{\phi(w_0)})|$ and $\epsilon_n = \text{const.} \times \sqrt{\log n}$.

• We have to understand the behavior of $|\mathcal{K}_n(z, w)|$ when z and w are in the vicinity of the boundary (order $\mathcal{O}(\sqrt{\frac{\log n}{n}})$ from ∂S_Q).

How to prove the Edge Theorem?

ullet The number variance is essentially dictated by the boundary $\partial \mathcal{S}_Q$.

$$\begin{aligned} \text{Var } N_A^{(n)} &= \int_A \int_{A^c} |\mathscr{K}_n(z,w)|^2 dA(z) dA(w) \\ &\approx \int_{\partial S_Q} \int_{d(z_0,w_0) \leq \sqrt{\frac{\log n}{n}}} \int_{-\epsilon_n}^{\delta} \int_{\delta}^{\epsilon_n} \frac{|\phi'(z_0)| |\phi'(w_0)|}{n \sqrt{\Delta Q(z_0) \Delta Q(w_0)}} \times \\ &\left| \mathscr{K}_n \left(z_0 + \frac{\vec{n}(z_0) \xi}{\sqrt{n \Delta Q(z_0)}}, w_0 + \frac{\vec{n}(w_0) \eta}{\sqrt{n \Delta Q(w_0)}} \right) \right|^2 d\xi d\eta d\mathscr{H}^1(w_0) d\mathscr{H}^1(w_0). \end{aligned}$$

where $d(z_0, w_0) = |\log(\phi(z_0)\overline{\phi(w_0)})|$ and $\epsilon_n = \text{const.} \times \sqrt{\log n}$.

- We have to understand the behavior of $|\mathcal{K}_n(z, w)|$ when z and w are in the vicinity of the boundary (order $\mathcal{O}(\sqrt{\frac{\log n}{n}})$ from ∂S_Q).
- A distinction has to be made between z_0 and w_0 close to each other $(z_0-w_0=\mathscr{O}(\sqrt{\frac{\log n}{n}}))$ and the case where they are not.

Lemma (Marzo - M. - Ortega-Cerdà '25)

Assume the conditions on Q from the Edge Theorem. Let $z_0, w_0 \in \partial S_Q$ and denote by $\vec{n}(z_0)$ and $\vec{n}(w_0)$ the outward unit normal vectors on ∂S_Q at z_0 and w_0 . Then we have as $n \to \infty$ that

$$\begin{split} \frac{1}{n\sqrt{\Delta Q(z_0)\Delta Q(w_0)}} \left| \mathscr{K}_n \left(z_0 + \frac{\vec{n}(z_0)\xi}{\sqrt{n\Delta Q(z_0)}}, w_0 + \frac{\vec{n}(w_0)\eta}{\sqrt{n\Delta Q(w_0)}} \right) \right| = \\ \left(\frac{1}{2} + \mathscr{O}(\frac{\log^3 n}{\sqrt{n}}) \right) \exp \left(-\frac{1}{2} |\xi - \eta|^2 - n\Delta Q(z_0) \frac{(\log(\phi(z_0)\overline{\phi(w_0)}))^2}{2|\phi'(z_0)|^2} \right) \\ \left| \operatorname{erfc} \left(\frac{\xi + \overline{\eta}}{\sqrt{2}} + \sqrt{n\Delta Q(z_0)} \frac{\log(\phi(z_0)\overline{\phi(w_0)})}{\sqrt{2}|\phi'(z_0)|} \right) \right| \end{split}$$

uniformly for $|z_0 - w_0| = \mathcal{O}(\sqrt{\frac{\log n}{n}})$ and $\xi, \eta = \mathcal{O}(\sqrt{\log n})$, where ϕ is the conformal map from S_Q^c to $\overline{\mathbb{D}}^c$ such that $\phi(\infty) = \infty$ and $\phi'(\infty) > 0$.

Generalizes Hedenmalm-Wennman '21 where $z_0 = w_0$ and $\xi, \eta = \mathcal{O}(1)$.

Lemma (Marzo - M. - Ortega-Cerdà '25)

Consider a random normal matrix model with a potential Q that is C^2 on \mathbb{C} , and real analytic and strictly subharmonic on a neighborhood of S_{Ω} . Assume S_Q is simply connected and has a smooth boundary. As $n \to \infty$

$$\frac{1}{\sqrt{n}} \left| \mathcal{K}_n \left(z_0 + \frac{\vec{n}(z_0)\xi}{\sqrt{n\Delta Q(z_0)}}, w_0 + \frac{\vec{n}(w_0)\eta}{\sqrt{n\Delta Q(w_0)}} \right) \right| \\
\leq C_Q \left| \mathcal{S} \left(z_0 + \frac{\vec{n}(z_0)\xi}{\sqrt{n\Delta Q(z_0)}}, w_0 + \frac{\vec{n}(w_0)\eta}{\sqrt{n\Delta Q(w_0)}} \right) \right| e^{-(\operatorname{Re}\xi)^2} e^{-(\operatorname{Re}\eta)^2},$$

uniformly for $z_0, w_0 \in \partial S_Q$ and $\xi, \eta = \mathcal{O}(\sqrt{\log n})$, where $C_Q > 0$, and \mathscr{S} is the Szegő kernel associated with ∂S_{Ω} .

$$\mathcal{S}(z,w) = \frac{1}{2\pi} \frac{\sqrt{\phi'(z)} \overline{\sqrt{\phi'(w)}}}{\phi(z) \overline{\phi(w)} - 1},$$

Related result by Ameur and Cronvall '23 with condition $|z_0 - w_0| > \epsilon$.

19 / 20

B. Lacroix-A-Chez-Toine, S. N. Majumdar, and G. Schehr

Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: Exact results for the entanglement entropy and number variance. Phys. Rev. A 99, 021602(R) (2019).

G. Akemann, S.-S. Byun, and M. Ebke Universality of the number variance in rotational invariant two-dimensional Coulomb gases. J. Phys. A: Math Theor. 56(49), 495202 (2023).

M. Levi, J. Marzo and J. Ortega-Cerdà Linear statistics of determinantal point processes and norm representations. Int. Mat. Res. Not. 2024(19), 12869-12903 (2024).

Akemann, Duits, Molag

Fluctuations in various regimes of non-Hermiticity and a holographic principle.

arXiv preprint. arXiv:2412.15854 (2024).

HAPPY BIRTHDAY
PETER!

THANK YOU!