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Plan

• Dynamically emergent correlations between independent particles
via stochastic fluctuation of the environment

=⇒ general setting

• A simple model: Switching confining potential (box/trap)

• Exact nonequilibrium stationary state (NESS)

=⇒ Conditionally independent and identically distributed (CIID)

• Recent experiments using optical tweezers

• Generalisation to other models with stochastically driven environment

• Summary and Conclusion
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Dynamically emergent correlations: general setting

environment

Particles: non-interacting (say Brownian)

Environment: stochastic (independent of particle motions)

Stochastic dynamics of the environment induces strong correlations
between particles

=⇒ Emergent correlations
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Christiaan Huygens (1629-1695)
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A simple model: stochastically switching box size

L1

L2

r
1

r
2

Particles ⇒ independent Brownian with reflecting bc. at the walls

Box size ⇒ stochastically switching between two values L1 and L2

L1
r1−→ L2

L1
r2←− L2
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A simple model: stochastically switching box size

L1

r
1

r
2

L
2

t
0

L(t)

L1

L2

p
1
(τ) = r1 e−r1τ

p
2
(τ) = r2 e

−r
2τ

Box size L(t) =⇒ a dichotomous telegraphic process

Goal: to compute the joint PDF P(x1, x2, . . . , xN|t) at time t

In particular, the stationary state (if it exists)

Pst(x1, x2, . . . , xN) = P(x1, x2, . . . , xN|t→∞)
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An interesting limiting case

L1

r
1

r
2

L
2

A limiting case:

L1 = 0 and L2 →∞

r1 →∞ and r2 = r

N independent Brownian motions =⇒ simultaneously reset
(instantaneously) to the origin with rate r

sp
ac

e

0 t

τ

time 

τ τ τ1 2 3 4

p (τ) = r e
_rτ
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A limiting case

N independent Brownian motions =⇒ simultaneously reset
(instantaneously) to the origin with rate r

sp
ac

e

0 t

τ

time 

τ τ τ1 2 3 4

p (τ) = r e
_rτ

=⇒ A multiparticle generalization of stochastic resetting of a
single N = 1 diffusing particle

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]
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A limiting case
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Single particle (N = 1)
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N = 1⇒ a single Brownian particle in d = 1

resetting rate = r
s
p

a
c
e

0 r

rr

time

Poissonian resetting

Time intervals between successive
resettings distributed as:

p(τ) = r e−rτ

Dynamics: In a small time interval ∆t

x(t +∆t) = 0 with prob. r∆t (resetting)

= x(t) + η(t)∆t with prob. 1− r∆t (diffusion)

η(t) → Gaussian white noise: ⟨η(t)⟩ = 0 and ⟨η(t)η(t ′)⟩ = 2D δ(t − t ′)

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]
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Prob. density pr(x , t) with resetting rate r > 0

resetting rate = r

s
p
a
c
e

0 r

rr

time

pr (x , t) → prob. density at time t,

given pr (x , 0) = δ(x)

• In the absence of resetting (r = 0):

p0(x , t) =
1√

4π D t
exp[−x2/4Dt]

• In the presence of resetting (r > 0):

pr (x , t) =?
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Exact solution valid at all times t
resetting rate = r

sp
ac

e

0 r

rr
time

x

t

τ

last reset 
before t

• Exact solution at all times t:

pr (x |t) = e−r t p0(x |t) +
∫ t

0

dτ (r e−r τ ) p0(x |τ)

where p0(x |τ) = diffusion propagator = 1√
4π D τ

exp[−x2/4Dτ ]

Renewal interpretation: τ → time since the last resetting during which
=⇒ free diffusion

• As t →∞, pstr (x) = r
∫∞
0

p0(x |τ) e−r τ dτ = α0

2 exp[−α0 |x |]
where α0 =

√
r/D
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Stationary State

Exact solution → pstr (x) =
α0

2
exp[−α0 |x |] with α0 =

√
r/D

p

x

st

r
(x)

0

→ nonequilibrium stationary state
(NESS)

⇒ current carrying with
detailed balance → violated

pstr (x) = α0 exp[−Veff(x)]
effective potential: α0|x |

Experimental verificaion using
holographic optical tweezers

Tal-Friedman, Pal, Sekhon, Reuveni, & Roichman

J. Phys. Chem. Lett. 11, 7350 (2020)
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Toy model =⇒ explosion of activities
• Enzymatic reactions in biology (Michaelis-Menten reaction)
• Diffusion in a confining potential/box
• Lévy flights, Lévy walks, fractional BM with resetting
• Space-time dependent resetting rate r(x , t)
• Search via nonequilibrium reset dynamics vs. equilibrium dynamics
• Resetting dynamics of extended systems
• Memory dependent reset
• Quantum dynamics with reset
• Active particles with reset
• Cost of resetting
• Optimization of random search algorithms
• Optimal strategy for animal movements

. . . =⇒ a long list !

Reviews: “Stochastic resetting and applications”,
M.R. Evans, S.M., & G. Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020)

“The inspection paradox in stochastic resetting”,
A. Pal, S. Kostinski & S. Reuveni, J. Phys. A. : Math. Theor. 55, 021001 (2022)

S.N. Majumdar Dynamically Emergent Correlations



Toy model =⇒ explosion of activities
• Enzymatic reactions in biology (Michaelis-Menten reaction)
• Diffusion in a confining potential/box
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Multiparticle Generalization (N > 1)
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N > 1 independent Brownian motions in d = 1

sp
ac

e
0 t

time τ

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

Joint distribution at any time t:

Pr ({xi}|t) = e−r t

N∏
i=1

p0(xi |t) + r

∫ t

0

dτ e−r τ
N∏
i=1

p0(xi |τ)

where p0(x |τ) = 1√
4πDτ

e−x2
i /4Dτ

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Dynamically emergent correlations

Joint distribution at any time t:

Pr ({xi}|t) = e−r t
N∏
i=1

p0(xi |t) + r

∫ t

0

dτ e−r τ
N∏
i=1

p0(xi |τ)

where p0(x |τ) = 1√
4πDτ

e−x2
i /4Dτ

The joint distribution does not factorize =⇒ correlated resetting gas

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

−→ dynamically emergent correlations

Correlation function at time t for any pair i ̸= j :

By symmetry, ⟨xixj⟩ − ⟨xi ⟩⟨xj⟩ = 0 at all times t

One needs to go to higher order to detect the correlations
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Dynamically emergent correlations

Higher order correlation function for i ̸= j

Ci,j(t) = ⟨x2i x2j ⟩ − ⟨x2i ⟩ ⟨x2j ⟩ =
4D2

r2
fc(r t)

where fc(z) = 1− 2 z e−z − e−2 z

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0

fc(z)

fc(z) ≈


1
3 z

3 z → 0

1− 2 z e−z z →∞

correlations grow with time
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Correlated resetting gas in the stationary state

sp
ac

e
0 t

time τ

N Brownian motions (independent) that are simultaneously reset with
rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times t →∞

Pst
r ({xi}) = r

∫ ∞

0

dτ e−r τ
N∏
i=1

1√
4πDτ

e−x2
i /4Dτ

The joint distribution does not factorize even in the NESS

⟨x2i x2j ⟩ − ⟨x2i ⟩ ⟨x2j ⟩ = 4D2

r2 =⇒ attractive all-to-all interaction

=⇒ strongly correlated resetting gas
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Solvable Correlated Gas

time 

s
p

a
c
e

0

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ

N∏
i=1

p0(xi |τ)

p0(x |τ) = 1√
4πDτ

e−x2
i /4Dτ

The stationary joint distribution has a CIID structure =⇒ Solvable

Pst
r (x1, x2, . . . , xN) =

∫ ∞

−∞
du h(u)

N∏
i=1

p0(xi |u)

Here u ≡ τ and h(u) ≡ r e−r u θ(u)

CIID =⇒ Conditionally Independent and Identically Distributed
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Super-statistical ensembles in random matrix theory

Examples of deformed Gaussian random matrix ensembles:

P(X) =

∫ ∞

0

du h(u) exp

[
− 1

2 u
Tr(X 2)

]

The variance u =⇒ random variable drawn from h(u)

Abdul-Magd (2005); Bohigas, Carvalho, Pato (2008);

Abdul-Magd, Akemann, Vivo (2009)

However, no microscopic dynamics leading to these ensembles
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Solvable Correlated Gas

Joint distribution: Pst
r ({xi}) = r

∫ ∞

0

dτ e−r τ
N∏
i=1

p0(xi |τ)

Despite the presence of strong correlations, several physical observables
can be computed exactly in the NESS due to the CIID structure

(1) Compute any observable for the ideal gas ⇒ I.I.D variables with
distribution p0(x |τ) parametrized by τ =⇒ easy

(2) Average over the random parameter τ using h(τ) = r e−r τ

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Examples:

• Average density

• Distribution of the k-th maximum:
Order statistics

• Spacing distribution

• Full Counting Statistics
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Explicit Results
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Average Density

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ

N∏
i=1

p0(xi |τ)

p0(x |τ) = 1√
4πDτ

e−x2
i /4Dτ

Average density:

ρ(x ,N) = 1
N

N∑
i=1

⟨δ(xi − x)⟩ =
∫

Pst
r (x , x2, . . . , xN) dx2 dx3 . . . dxN

= r
∫∞
0

dτ e−r τ p0(x |τ) = α0

2 exp[−α0 |x |]

where α0 =
√
r/D

=⇒ same as the single particle position distribution
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Order Statistics

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Mk =⇒ k-th maximum

Set k = αN

α ∼ O(1) =⇒ bulk

α ∼ O(1/N) =⇒ edge

Symmetric around α = 1/2

• Bulk: Prob.[Mk = w ] ≈ 1
Λ(α) f

(
w

Λ(α)

)
where Λ(α) =

√
4D
r erfc−1(2α)

• Edge: Prob.[Mk = w ] ≈ 1
LN

f
(

w
LN

)
where LN =

√
4D lnN

r

The scaling function f(z) = 2 z e−z2 θ(z)

=⇒ universal (indep. of α ≥ 1/2)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Gap/Spacing Statistics

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Mk =⇒ k-th maximum

k-th gap: dk = Mk −Mk+1

Set k = αN

α ∼ O(1) =⇒ bulk

α ∼ O(1/N) =⇒ edge

• Bulk: Prob.[dk = g ] ≈ 1
λN (α)

hgap
(

g
λN (α)

)
where λN(α) ∼ 1/N

• Edge: Prob.[dk = g ] ≈ 1
lN (k)

hgap
(

g
lN (k)

)
where lN(k) ∼ 1/

√
lnN

The scaling function hgap(z) = 2

∫ ∞

0

du e−u2−z/u (z ≥ 0)

=⇒ universal (indep. of α)
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Gap/Spacing Statistics

The gap scaling function:

hgap(z) = 2

∫ ∞
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Full Counting Statistics

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

NL =⇒ number of particles in [−L, L]

Clearly, 0 ≤ NL ≤ N

P(NL,N) =?

Full Counting Statistics: P(NL,N) ≈ 1
N H

(
NL

N = κ
)

(0 ≤ κ ≤ 1)

where the scaling function:

H(κ) = γ
√
π [u(κ)]−3 exp

[
−γ u−2(κ) + u2(κ)

]
with γ = r L2/(4D) and u(κ) = erf−1(κ)
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Full Counting Statistics

The scaling function H(κ)

H(κ)→ 8γ
π κ3 exp

[
− 4γ

π κ2

]
as κ→ 0

H(κ)→ γ
√
π

(1−κ) [ln(1−κ)]3/2
as κ→ 1
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M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Summary so far . . .

L1

r
1

r
2

L
2

A limiting case:

L1 = 0 and L2 →∞

r1 →∞ and r2 = r

• This limiting case =⇒ Exactly solvable with a strongly correlated
NESS

• The stationary joint distribution in the NESS =⇒ CIID structure

=⇒ allows us to compute physical observables expliciitly

• How generic is the CIID structure =⇒ going beyond this limiting case ?
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Switching Harmonic Trap
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N Brownian particles in a switching harmonic trap

p
1
(τ) = r1 e

p
2
(τ) = r

2
e
−r

t

µ1

µ2

µ(t)

0

−r
1τ

τ
2

dxi
dt

= −µ(t) xi +
√
2D ηi (t)

ηi (t) −→ Gaussian white noise with zero mean
and correlator ⟨ηi (t)ηj(t ′)⟩ = δi,j δ(t − t ′)

The stiffness µ(t) of the harmonic trap changes from µ1 → µ2 < µ1 with
rate r1 and µ2 → µ1 with rate r2 =⇒ dichotomous telegraphic noise

=⇒ drives the system into a correlated NESS with a stationary joint
distribution P(x1, x2, . . . , xN |t →∞) = Pst(x⃗ |t →∞) = ?

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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N Brownian particles in a switching harmonic trap
The limit

µ1 →∞, µ2 → 0,
r1 →∞ and r2 = r

=⇒ simultaneous resetting
model

P1,2(x⃗ |t) −→ Prob. that the position is x⃗ and the stiffness is µ1 (or µ2)
at time t

They satisfy a pair of coupled Fokker-Planck equations:

∂tP1 = D
N∑
i=1

∂2
xiP1 + µ1

N∑
i=1

∂xi (xi P1)− r1 P1 + r2 P2

∂tP2 = D
N∑
i=1

∂2
xiP2 + µ2

N∑
i=1

∂xi (xi P2)− r2 P2 + r1 P1

with initial conditions: P1(x⃗ |0) = 1
2 δ(x⃗) and P2(x⃗ |0) = 1

2 δ(x⃗)
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Exact stationary solution
Fourier transforms:

P̃1,2(k⃗ |t) =
∫
P1,2(x⃗ |t) e i k⃗·x⃗ dx⃗

Rotational symmetry

=⇒ P̃1,2(k⃗ |t) = P̃1,2(k|t)

where
k2 = k2

1 + k2
2 + . . .+ k2

N

Exact stationary solution in terms of R1 =
r1
2µ1

and R2 =
r2
2µ2

P̃st
1 (k) = r2

r1+r2
e−D k2/(2µ1) M

(
R1, 1 + R1 + R2,−D k2 (µ1−µ2)

2µ1 µ2

)
P̃st
2 (k) = r1

r1+r2
e−D k2/(2µ2) M

(
R2, 1 + R1 + R2,−D k2 (µ2−µ1)

2µ1 µ2

)
where M(a, b, z) = 1 + a

b z +
a(a+1)
b(b+1)

z2

2! + · · · −→ Kummer’s function

R1 =
r1
2µ1

and R2 =
r2
2µ2

The full solution: P̃st(k) = P̃st
1 (k) + P̃st

2 (k)

Inverse Fourier transform Pst(x⃗) has a CIID structure −→ not manifest
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Fourier inversion

P̃st
1 (k) = r2

r1+r2
e−D k2/(2µ1) M

(
R1, 1 + R1 + R2,−D k2 (µ1−µ2)

2µ1 µ2

)
P̃st
2 (k) = r1

r1+r2
e−D k2/(2µ2) M

(
R2, 1 + R1 + R2,−D k2 (µ2−µ1)

2µ1 µ2

)

Using the integral representation

M(a, b,−c k2) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0

du ua−1 (1− u)b−a−1 e−c k2 u

One can invert P̃st(k) = P̃st
1 (k) + P̃st

2 (k) explicitly =⇒
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‘Hidden’ CIID structure of the stationary state

Inverting the Fourier transform one finds the CIID representation

Pst(x⃗) =

∫ 1

0

du h(u)
N∏
i=1

1√
2V (u)

e−x2
i /(2V (u))

where V (u) = D

(
u

µ2
+

1− u

µ1

)

and h(u) = AuR1−1 (1− u)R2−1

[
u

µ2
+

1− u

µ1

]
Since

∫ 1

0
h(u)du = 1, the function h(u) can be interpreted as the PDF of

the random variable u ∈ [0, 1] −→ the fraction of time each particle
spends in µ2 phase

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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Inverting the Fourier transform one finds the CIID representation

Pst(x⃗) =

∫ 1

0

du h(u)
N∏
i=1

1√
2V (u)

e−x2
i /(2V (u))

where V (u) = D

(
u

µ2
+

1− u

µ1

)

and h(u) = AuR1−1 (1− u)R2−1

[
u

µ2
+

1− u

µ1

]
Since

∫ 1

0
h(u)du = 1, the function h(u) can be interpreted as the PDF of

the random variable u ∈ [0, 1] −→ the fraction of time each particle
spends in µ2 phase

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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All observables −→ exactly solvable

Using the explicit CIID structure of the stationary joint PDF

Pst(x⃗) =

∫ 1

0

du h(u)
N∏
i=1

p0(xi |u)

all observables in the correlated NESS can be computed explicitly and
they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

For example, the extreme value statistics (EVS):

P(M1 = w ,N)→ 1√
lnN

f
(

w√
lnN

)
where the exact scaling function (with R1 =

r1
2µ1

and R2 =
r2
2µ2

):

f (z) = B z3
(
1− z2

R2

)R2−1 (
z2

R1
− 1

)R1−1

with
√
R1 ≤ z ≤

√
R2

−→ a new extreme value distribution of strongly correlated random
variables with a finite support
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EVS with a finite support: Universality

The exact scaling function for the distribution of the scaled k-th
maximum Mk

f (z) = B z3
(
1− z2

R2

)R2−1 (
z2

R1
− 1

)R1−1

with
√
R1 ≤ z ≤

√
R2

The scaling function f (z) −→ universal, i.e,., same for all Mk ’s in d = 1
and also for all d ≥ 1

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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Experimental results:

[set-up: S. Ciliberto]

• colloidal particles in synchronized harmonic traps

• particles are immersed in fluid =⇒ long-range hydrodynamic interaction
(neglected in the theoretical model)
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Experimental results on C2

C2 =
⟨x2

i x2
j ⟩

⟨x2
i ⟩⟨x

2
j ⟩
− 1 [S. Ciliberto, unpublished data]

Theoretical prediction [for r1 = r2 = r and with R1 =
r

2µ1
and R2 =

r
2µ2

]:

C2 =
(µ2 − µ1)

2(2 + 3R1 + 3R2 + 4R1R2)

(2 + R1 + R2)(2r + µ1 + µ2)2
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Experimental results on M1:

Experiments with a finite number of colloidal particles in an optical trap

=⇒ up to N = 8 particles [S. Ciliberto, unpublished data]
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Two other models with CIID structure

N noninteracting particles (bosons) in a harmonic trap

(1) Model 1 (Classical): The center of the harmonic trap performs a
stochastic motion =⇒ drives the system into a correlated NESS

Sabhapandit & S.M. J. Phys. A.: Math. Theor. 57, 335003 (2024)

(2) Model 2 (Quantum): N noninteracting bosons in the ground state of
a harmonic trap whose center is quenched from +a to −a, evolves
unitarily for a random time and then the state is reset to the ground state
with center at +a =⇒ drives the system into a correlated NESS

Kulkarni, S.M. & Sabhapandit, J. Phys. A: Math. Theor. 58, 105003 (2025)
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Two other models with CIID structure

In both models, the NESS has the CIID (conditionally independent and
identically distributed) structure

Pst(x1, x2, . . . , xN) =

∫ ∞

−∞
du h(u)

N∏
i=1

p0(xi |u)

This CIID structure makes the problem solvable for various observables
such as average density, spacing distribution, extreme statistics, full
counting statistics etc.
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Summary and Conclusion

• Stochastic fluctuation of the common environment

=⇒ strong emerging correlations between particles

• Exactly solvable example: switching harmonic trap

• The NESS has a CIID structure

=⇒ Several physical observables are exactly computable and have rich
interesting behaviors, despite being a strongly correlated system

• Comparison with experiments on colloidal particles in an optical trap

• Easily generalisable to a whole new class of solvable correlated gases in
their nonequilibrium stationary state −→ ballistic particles, Lévy flights,
harmonic potential with a stochastic center, noninteracting bosons, ..

=⇒ all have this CIID structure ⇒ Exactly solvable
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