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e Dynamically emergent correlations between independent particles
via stochastic fluctuation of the environment

— general setting
e A simple model: Switching confining potential (box/trap)

e Exact nonequilibrium stationary state (NESS)

= Conditionally independent and identically distributed (CIID)
e Recent experiments using optical tweezers
e Generalisation to other models with stochastically driven environment

e Summary and Conclusion
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Dynamically correlations: general setting

environment

T~

Particles: non-interacting (say Brownian)

Environment: stochastic (independent of particle motions)
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Dynamically correlations: general setting

environment

T~

Particles: non-interacting (say Brownian)
Environment: stochastic (independent of particle motions)

Stochastic dynamics of the environment induces strong correlations
between particles
— Emergent correlations
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A simple model: stochastically switching box size

Ly
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Particles = independent Brownian with reflecting bc. at the walls
Box size = stochastically switching between two values L; and L,
L &Ly
L1 <L,



A simple model: stochastically switching box size

L I
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Box size L(t) = a dichotomous telegraphic process
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A simple model: stochastically switching box size
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Box size L(t) = a dichotomous telegraphic process

Goal: to compute the joint PDF P(x1,xz,...,xn|t) at time t

In particular, the stationary state (if it exists)

geeey

xn) = P(x1,x2, ..., xn[t — oo)‘
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An interesting limiting case
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An interesting limiting case

L,
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: : A limiting case:
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N independent Brownian motions = simultaneously reset
(instantaneously) to the origin with rate r

rT

p(ty=re

space —

=)
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A limiting case

N independent Brownian motions = simultaneously reset
(instantaneously) to the origin with rate r

© space —
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A limiting case

N independent Brownian motions = simultaneously reset
(instantaneously) to the origin with rate r

© space —

= A multiparticle generalization of stochastic resetting of a

single N = 1 diffusing particle
[M.R. Evans & S.M., PRL, 106, 160601 (2011)]
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Single particle (N = 1)
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N = 1 = a single Brownian particle in d =1

g resetting rate =1
g
12
Poissonian resetting

) [/‘F -~ Time intervals between successive

a0 ~ / p . . .
e’ ! \ { S —— resettings distributed as:

NG time
p(r) =re”""
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N = 1 = a single Brownian particle in d =1

g resetting rate =1
g
12
Poissonian resetting

) [/‘F -~ Time intervals between successive

a0 ~ / p . . .
e’ ! \ { S —— resettings distributed as:

NG time
p(r) =re”""

Dynamics: In a small time interval At

x(t+At)=0 with prob. rAt (resetting)
=x(t)+n(t)At  with prob. 1 —rAt  (diffusion)
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N = 1 = a single Brownian particle in d =1

g resetting rate =1
&
Poissonian resetting
! ‘F d Time intervals between successive
0 l j st resettings distributed as:
r time
p(r) =re”""

Dynamics: In a small time interval At

x(t+At)=0 with prob. rAt (resetting)
=x(t)+n(t)At  with prob. 1 —rAt  (diffusion)

n(t) — Gaussian white noise: (n(t)) =0 and (n(t)n(t')) =2D(t — t')
[M.R. Evans & S.M., PRL, 106, 160601 (2011)]
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Prob. density p,(x, t) with resetting rate r > 0

g resetting rate = r
&
o pr(x,t) — prob. density at time t,
A ~ L/ . 0 =5
1] SO A R given p,(x,0) = d(x)

e In the absence of resetting (r = 0):

po(x, t) = \/47er exp[—x?/4Dt]
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Prob. density p,(x, t) with resetting rate r > 0

g resetting rate = r
&
o pr(x,t) — prob. density at time t,
A ~ L/ . 0 =5
1] SO A R given p,(x,0) = d(x)

e In the absence of resetting (r = 0):

po(x, t) = \/47er exp[—x?/4Dt]

e In the presence of resetting (r > 0):

pr(x, t) =7
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Exact solution valid at all times ¢

g resetting rate = r :
o :
@ |
AX
S
7 J :
A o
0 T = 't time
~— :
T :
last reset :
before t

e Exact solution at all times t:

pxt) = e polxle) + [ (e pofir)

where po(x|7) = diffusion propagator = \/‘JT exp[—x?/4Dr]

Renewal interpretation: 7 — time since the last resetting during which
= free diffusion
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Exact solution valid at all times ¢

g resetting rate = r :
o :
@ |
AX
S
A 7 J :
e ll” — S lr - :
0 T = 't time
—~— :
T :
last reset :
before t

e Exact solution at all times t:

pxt) = e polxle) + [ (e pofir)

where po(x|7) = diffusion propagator = \/‘JT exp[—x2/4Dr]
Renewal interpretation: 7 — time since the last resetting during which
= free diffusion

o Ast— o0, pii(x)=r [ po(x|T)e " T dT =% exp[—ag|x]]

where ag = +/r/D



Stationary State

Exact solution — | p5*(x) = (%0 exp[—ao |x|] | with ag = /r/D
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Stationary State

Exact solution — | p5*(x) = (%0 exp[—ao |x|] | with ag = /r/D

— nonequilibrium stationary state

Py 0o (NESS)
I = current carrying with
/ detailed balance — violated
- T pst(x) = ap exp[— Ve (x)]
0 x effective potential: x|
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Stationary State

with ag = +/r/D

— nonequilibrium stationary state

(NESS)

= current carrying with
detailed balance — violated

pr(x) = o exp[— Ve (x)]

effective potential: x|

Experimental verificaion using
holographic optical tweezers

Tal-Friedman, Pal, Sekhon, Reuveni, & Roichman

H st _ ,
Exact solution — | p;*(x) = > exp[—ao |x|]
st
P, x
V4
/ N
_ /’//7// T —
(0]
X
0.3 .
Experiment (a)

77777 Theory /4

0.2 ¥y
= ¥ o
[=% w ‘\

0.1 B .

-‘-_/_z" \\""‘-—._

oh= —
-6 -4 -2 0O 2 4 6
X (pm)

J. Phys. Chem. Lett. 11, 7350 (2020)
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Toy model — explosion of activities

e Enzymatic reactions in biology (Michaelis-Menten reaction)
e Diffusion in a confining potential /box

e Lévy flights, Lévy walks, fractional BM with resetting

e Space-time dependent resetting rate r(x, t)

e Search via nonequilibrium reset dynamics vs. equilibrium dynamics
e Resetting dynamics of extended systems

e Memory dependent reset

e Quantum dynamics with reset

e Active particles with reset

e Cost of resetting

e Optimization of random search algorithms

e Optimal strategy for animal movements

— a long list !
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Toy model — explosion of activities

e Enzymatic reactions in biology (Michaelis-Menten reaction)
e Diffusion in a confining potential /box

e Lévy flights, Lévy walks, fractional BM with resetting

e Space-time dependent resetting rate r(x, t)

e Search via nonequilibrium reset dynamics vs. equilibrium dynamics
e Resetting dynamics of extended systems

e Memory dependent reset

e Quantum dynamics with reset

e Active particles with reset

e Cost of resetting

e Optimization of random search algorithms

e Optimal strategy for animal movements

— a long list !

Reviews: “Stochastic resetting and applications”,
M.R. Evans, S.M., & G. Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020)

“The inspection paradox in stochastic resetting”,
A. Pal, S. Kostinski & S. Reuveni, J. Phys. A. : Math. Theor. 55, 021001 (2022)
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Multiparticle Generalization (N > 1)

S.N. Majumdar Dynamically Emergent Correlations



Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin
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time

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

Joint distribution at any time t:

t N
P, ({xi}t) = ’tho xi|t) + / dTe_rTHpo(X,"T)
0 i—1

where PO(X‘T) = \/ﬁ e ?/aDT

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Dynamically emergent correlations

Joint distribution at any time t:

N
P ({xi}]t) = ”Hpo (xilt) +r/ dre " [ [otlr)

i=1

where po(x|7) = \/ﬁ e=x/4D7

The joint distribution does not factorize = correlated resetting gas
In this model, interactions between particles are not built-in, but the

correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

— dynamically emergent correlations
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Dynamically emergent correlations

Joint distribution at any time t:

N
P ({xi}]t) = ”Hpo (xilt) +r/ dre " [ [otlr)

i=1

1 —x?/4DT

where pO(X‘T) = \/ﬁ e

The joint distribution does not factorize = correlated resetting gas

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

— dynamically emergent correlations
Correlation function at time t for any pair i # j:

By symmetry, (xix;) — (x;)(x;) = 0 at all times ¢
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Dynamically emergent correlations

Joint distribution at any time t:

N
P ({xi}]t) = ”Hpo (xilt) +r/ dre " [ [otlr)

i=1

where po(x|7) = \/ﬁ e=x/4D7

The joint distribution does not factorize = correlated resetting gas

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

— dynamically emergent correlations
Correlation function at time t for any pair i # j:
By symmetry, (xix;) — (x;)(x;) = 0 at all times ¢

One needs to go to higher order to detect the correlations
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Dynamically emergent correlations

Higher order correlation function for i # j

2.2 2\ /.2 4D?
Giy(t) = (5 x7) = {x7) () = —5- fe(rt)
where f(z)=1—2ze % —e 27
fo(2)
10F % z3 z—0
il felz)
06¢ 1-2ze? z— 00
0.4
0.2f . . .
correlations grow with time
z
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Correlated resetting gas in the stationary state

N Brownian motions (independent) that are simultaneously reset with
rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times t — oo

. N
e 1 2
P ({xi})=r / dre "7 | | e X/4DT
(a}) Jo . VArDT

The joint distribution does not factorize even in the NESS

(xPx7) = () () = 4%2 = attractive all-to-all interaction

— strongly correlated resetting gas
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Solvable Correlated Gas

‘ Joint distribution:
0 N
9 st oo —rT
g P ({xi}) =r Jo~ dre "] [ po(xil7)
@ i=1
0 _ 1 —x2/aDr

Po(X|T) = Zp- e

time —

The stationary joint distribution has a CIID structure = Solvable

P‘:t(xl,x2,...,x,\,):/ du h(u Hpo xi|u)

Here u =7 and h(u) =re ""6(u)
CIID = Conditionally Independent and Identically Distributed
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Super-statistical ensembles in random matrix theory

Examples of deformed Gaussian random matrix ensembles:

P(X) = /Ox du h(u) exp {21 Tr(Xz)}

u

The variance u = random variable drawn from h(u)

Abdul-Magd (2005); Bohigas, Carvalho, Pato (2008);
Abdul-Magd, Akemann, Vivo (2009)
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Super-statistical ensembles in random matrix theory

Examples of deformed Gaussian random matrix ensembles:

u

P(X) = /Ox du h(u) exp {21 Tr(Xz)}

The variance u = random variable drawn from h(u)
Abdul-Magd (2005); Bohigas, Carvalho, Pato (2008);
Abdul-Magd, Akemann, Vivo (2009)

However, no microscopic dynamics leading to these ensembles
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Solvable Correlated Gas

~ N
Joint distribution:  P:' ({x;}) = r / dre '™ Hpo(x,-|r)
70 i=1
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Solvable Correlated Gas

~ N
Joint distribution:  P:' ({x;}) = r / dre '™ Hpo(x,-|r)
70 i=1

Despite the presence of strong correlations, several physical observables
can be computed exactly in the NESS due to the CIID structure

(1) Compute any observable for the ideal gas = |.I.D variables with
distribution po(x|7) parametrized by 7 = easy

rT

(2) Average over the random parameter 7 using h(7) = re~
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Solvable Correlated Gas

~ N
Joint distribution:  P:' ({x;}) = r / dre '™ Hpo(x,-|r)
70 i=1

Despite the presence of strong correlations, several physical observables
can be computed exactly in the NESS due to the CIID structure

(1) Compute any observable for the ideal gas = |.I.D variables with
distribution po(x|7) parametrized by 7 = easy

rT

(2) Average over the random parameter 7 using h(7) = re~

p(x,N)
Examples:

e Average density

e Distribution of the k-th maximum:
Order statistics

e Spacing distribution

e Full Counting Statistics
0 t X
M, ~+/InN
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Explicit Results
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Average Density

p,N)

Joint distribution:

P ({xi}) =r [, dre” ”Hpo xi|T)

i=1
2
o) = kg 47
Average density:
:%Z /PrSt(nyz,...,XN)dxzdx3...dx,\,
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Average Density

p,N)

Joint distribution:
N

P ({x}) =r fy~ dr e [ [ po(xilT)
i=1

—x?
polx|T) = gy e 4T
M, ~/InN
Average density:
:%Z /PrSt(nyz,...,XN)dxzdx3...dx,\,

=r fo dre™"7 po(x|T) = 9 exp[—ag |x[]
where ag = +/r/D

—> same as the single particle position distribution
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Order Statistics

px,N)
M) —> k-th maximum

Set k=aN
a ~ O(1) = bulk
a~ O(1/N) = edge

Symmetric around o = 1/2
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Order Statistics

px,N)
M) —> k-th maximum

Set k=alN
a ~ O(1) = bulk
a~ O(1/N) = edge

Symmetric around o = 1/2

o Bulk: Prob.[M = w] = 5L f (ﬁ) where A(a) = /%2 erfe1(2a)

S.N. Majumdar Dynamically Emergent Correlations



Order Statistics

px,N)
M) —> k-th maximum

Set k=alN
a ~ O(1) = bulk
a~ O(1/N) = edge

Symmetric around o = 1/2

o Bulk: Prob.[M = w] = 5L f (A(ng)> where A(a) = /%2 erfe1(2a)

e Edge: Prob.[M; = w] = ﬁ f (ﬁ) where Ly = (/421N
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Order Statistics

px,N)
M) —> k-th maximum

Set k=alN
a ~ O(1) = bulk
a~ O(1/N) = edge

Symmetric around o = 1/2

o Bulk: Prob.[M = w] = 5L f (A(ng)> where A(a) = /%2 erfe1(2a)

e Edge: Prob.[M; = w] = ﬁ f (ﬁ) where Ly = (/421N

The scaling function |f(z) = 2ze % 0(z)

= universal (indep. of o > 1/2)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Order Statistics

e Bulk:

Prob.[My =

ALy PUM )
-
" M = 500
e A N =TS0
0.3 .:-': \'\ M = [OOHN
03 f ! a=02
02 .'II \. a=04
||I o= 0,6
“f - EEE
(a) M/ A(e)
w] ~

5 f </\(V(Vl)> where A(a) = \/?erfc_l(2 @)

e Edge: Prob.[M, = w] ~ ﬁ f (ﬁ) where Ly = \/@

The scaling function

f(z) =2ze % 0(2)

= universal (indep. of o > 1/2)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Gap/Spacing Statistics

p(x,N)
M) = k-th maximum

k-th gap: dx = My — M1
Set k=alN

a ~ O(1) = bulk

a~ O(1/N) = edge
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Gap/Spacing Statistics

p(x,N)
M) = k-th maximum

k-th gap: dx = My — M1
Set k=alN

a ~ O(1) = bulk

a~ O(1/N) = edge

0 t
M, ~+/lnN

o Bulk: Prob.[dy = g] ~ 525 heap (Af(u)) where Ay(a) ~ 1/N
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Gap/Spacing Statistics
p(x,N)
M) = k-th maximum

k-th gap: dx = My — M1
Set k=alN

a ~ O(1) = bulk

a~ O(1/N) = edge

0 f
M, ~/inN
o Bulk: Prob.[dy = g] ~ 525 heap (Af(u)) where Ay(a) ~ 1/N

o Edge: Prob.[dy = g] ~ 14 e ( é(’k)> where Iy(k) ~ 1/v/InN

N

S.N. Majumdar Dynamically Emergent Correlations



Gap/Spacing Statistics

p(x,N)
M) = k-th maximum

k-th gap: dx = My — M1
Set k=alN

a ~ O(1) = bulk

a~ O(1/N) = edge

0 t
M, ~+/lnN

o Bulk: Prob.[dy = g] ~ 525 heap (Af(u)) where Ay(a) ~ 1/N

o Edge: Prob.[dy = g] ~ 14 e (,Né(’k)> where Iy(k) ~ 1/v/InN

geo o}

The scaling function | hgap(2) = 2 / du e~/ (z>0)
Jo

= universal (indep. of «)
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Gap/Spacing Statistics

Aplc)Pedy) _ .
N ! The gap scaling function:
“r N=3500
= N=750 0 )
\\ V= 1000 hgap(z) =92 / due™Y —z/u
““hﬂ_ﬁ 0
w=0.4 Ty — /T asz—0
e ~ e 3@/ a5 7 5 o0
(b) i F A (ex)

e Bulk: Prob.[d, = g] = )\Nl(a) hgap (M%a)) where Ay(a) ~1/N

o Edge: Prob.[di = g] ~ b heap (,ka)> where Iy(k) ~ 1/v/inN

The scaling function | hgap(z) = 2 / due=v'—2/u (z>0)
0

= universal (indep. of @)
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Full Counting Statistics

p(x,N)

Ni = number of particles in [—L, L]
Clearly, 0 < N, < N

P(NL, N) =?
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Full Counting Statistics

p(x,N)

Ni = number of particles in [—L, L]
Clearly, 0 < N, < N

P(NL, N) =?

0 t
M, ~+/lnN

Full Counting Statistics: P(N., N) ~ & H (% = k) (0<k<1)
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Full Counting Statistics

p(x,N)

Ni = number of particles in [—L, L]
Clearly, 0 < N, < N

P(NL, N) =?

0 t
M, ~+/lnN

Full Counting Statistics: P(N., N) ~ & H (% = k) (0<k<1)

where the scaling function:

with v = r [2/(4D) and u(k) = erf (k)
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Full Counting Statistics

NP(N,,N)

N =500

N=750 |

N = 1000
—— Theoretical

K

k=NJN

The scaling function H(k)

H(k) = 75 exp [~ 7] as v = 0

H(h)%m ask — 1

Full Counting Statistics: P(N., N) ~ & H (- = k) (0<k<1)

where the scaling function:

Hr) = /7 [u(R)] 2 exp [~ u2(6) + v3(r)]

with v = r [2/(4D) and u(k) = erf (k)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Summary so far . ..

L
: L : -
: : A limiting case:
! ° o
H [ ] —
: ) ;
! ° o | L1 =0 and L2 —
: o~
: o o ¢ n—ooand rn=r
: ) -
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Summary so far . ..

L,
: L :
E ] I i
: ° L
: o ° :
' i L e
H o ° [ ] T
! °

A limiting case:

L1:OandL2H:x:

rn—ooand rn=r

e This limiting case = Exactly solvable with a strongly correlated

NESS

e The stationary joint distribution in the NESS = CIID structure

— allows us to compute physical observables expliciitly

e How generic is the CIID structure = going beyond this limiting case ?
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Switching Harmonic Trap
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N Brownian particles in a switching harmonic trap

u(t Pl(t):rje"lt
Vi) R
N, t}-—-‘ 2 // B H m
i\ / 0
ST / s DU
. / Y By > s PO -ne 2"
U\ e 0 —
e e t
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N Brownian particles in a switching harmonic trap

dx;
== —ul(t)x + V2D (t)

ni(t) — Gaussian white noise with zero mean
and correlator (n;(t)n;(t')) = d;jo(t —t')

The stiffness p(t) of the harmonic trap changes from py1 — pp < pg with
rate r; and pup — py with rate b = dichotomous telegraphic noise
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N Brownian particles in a switching harmonic trap

dx;
= = —u(t)x +V2Di(2)

ni(t) — Gaussian white noise with zero mean
and correlator (n;(t)n;(t')) = d;jo(t —t')

The stiffness p(t) of the harmonic trap changes from py1 — pp < pg with
rate r; and pup — py with rate b = dichotomous telegraphic noise

= drives the system into a correlated NESS with a stationary joint
distribution P(x1, x, ..., xy|t — o0) = P5'(X|t — o) =7

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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N Brownian particles in a switching harmonic trap

The limit
Vixy
N p L e H1 — 00, pp — 0,
\G // rn—ooandn=r
A \ e
. / s oy > . .
O\ S = simultaneous resetting
B model
X
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N Brownian particles in a switching harmonic trap

The limit
Vixy
N p L e H1 — 00, pp — 0,
\G // rn—ooandn=r
A \ e
. / s oy > . .
O\ S = simultaneous resetting
B model
X

P1.2(X|t) — Prob. that the position is X and the stiffness is p1 (or p2)
at time t
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N Brownian particles in a switching harmonic trap

The limit
N S F pi1 — 00, fi2 — 0,
AP fo S
\G // rn—ooand rn=r
ST /
. / S | >l . .
N Yy ’ = simultaneous resetting
e model
0 X

P1.2(X|t) — Prob. that the position is X and the stiffness is p1 (or p2)
at time t

They satisfy a pair of coupled Fokker-Planck equations:

N N
0tP1 = DZ({)E,Pl —|—/1,1 Z({)X/. (X,' Pl) —n P1 =+ o) P2

i=1 i=1
0Py =D 0P+ 2 Oy (xiP2) —raPr+ 1Py
i=1 i=1

with initial conditions: Py(x]0) = 3 (X) and P»(x]0) = 3 6(x)
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Exact stationary solution

Fourier transforms:

Py o(K|t) = [ Pyo(X]t) e K5 dx
Rotational symmetry

— P1o(k|t) = Pra(K[t)

where
k> =k} + ks + ...+ k¥
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Exact stationary solution

Fourier transforms:

P12 k‘l’ fP12 ) ik';d)?

\\"G , / 2" Rotational symmetry
NN | S S e = Pralkle) = Pralkly)
\\\:’; ‘/,:’ A where
0 k> =kZ+ K+ ...+ k¥

Exact stationary solution in terms of R; = ﬁ and R, = ﬁ

/Si’t(k) _ _n ekaZ/(2,l,1) M <R17 1+ R+ Ry, _ DK (/11*/1,2)>

r+nrn 2 p1 p2
PsH(k) = 52 e OR/CH) M (Ry, 1+ Ry + Ry, — 25 tein) )
where M(a,b,z) =1+ 2z + ZEZ:B %2, + -+ — Kummer's function
Ri= 52 and Ry = 2
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Exact stationary solution

Fourier transforms:

P12 k‘l’ fP12 ) ik';d)?

N\ ) e Rotational symmetr
\G )/ onal symmetty
\\f ‘ _.-"‘l /’/ By > Hy = P172(k|t) = Pl,Q(k‘t)
\\‘__ ‘/';. // where
0 k> =kZ+ K+ ...+ k¥
Exact stationary solution in terms of R; = ﬁ and R, = ﬁ
ﬁft(k) _ nz@ e D k*/(2p1) M <R17 1+ R+ Ry, _Dkéfﬁg/m))
~ 2
P;t‘(k) _ rlirz e—Dk2/(2/42) M <R27 1+ R+ Ry, 7Dk2l(l;ltzl;m)>
where M(a,b,z) =1+ 2z + ZEZ:B %2, + -+ — Kummer's function
Rl = 2%1 and R2 = 2%2

The full solution: FN’St(k) = ﬁft(k) + :E’;t(k)
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Exact stationary solution

Fourier transforms:

P12 k‘l’ fP12 ) ik';d)?

\\"G , / 2" Rotational symmetry
NN | S S e = Pralkle) = Pralkly)
\\\:’; ‘/,:’ A where
0 k> =kZ+ K+ ...+ k¥

Exact stationary solution in terms of R; = ﬁ and R, = ﬁ

/Si’t(k) _ _n ekaZ/(2,l,1) M <R17 1+ R+ Ry, _ DK (/11*/1,2)>

r+nrn 2 p1 p2
PsH(k) = 52 e OR/CH) M (Ry, 1+ Ry + Ry, — 25 tein) )
where M(a,b,z) =1+ 2z + ZEZ:B %2, + -+ — Kummer's function
Ri= 52 and Ry = 2

The full solution: FN’St(k) = ﬁst(k) + :E’;t(k)

Inverse Fourier transform P*'(X) has a ClID structure — not manifest
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Fourier inversion

Pi*(k) = & e DK/Cu) (Rl-, 1+ R+ Ry, —W>

Pst(k) = 1 e=DK/(212) <R27 1+ R+ Ry, _D# (Mrm))

n—+nmn 2 py pr2
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Fourier inversion

~ 2 iy
Pft(k) = ﬁ ekaQ/(Qul) M (R]_-, 1 + Rl + R27 _DkZLIilel 2)>

Pst(k) = 1 e=DK/(212) <R27 1+ R+ Ry, _D# (Mrm))

r+r 2 g po

Using the integral representation

r(

b) ! _ Cal ek
o 2 a—1 o b—a—1 ck‘u
M(a, b, Ck)_ir(a)r(b—a) /0 duwi™ (1 —u) e

One can invert P5t(k) = Pt (k) + Ps(k) explicitly =
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‘Hidden’ CIID structure of the stationary state

Inverting the Fourier transform one finds the CIID representation

Pst()—(» efxy-z/(Z V(u))

1 N 1
)= /0 du h(u) .Uliz G
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‘Hidden’ CIID structure of the stationary state

Inverting the Fourier transform one finds the CIID representation

1 N
1 >
Ps*(x :/ duh(u) [ [ ——= e/ V()
0= [ @]l e
u 1—u
where V(u)=D ( + )
H2 H1
1—
and h(u) = Aufi=t (1 — u)Re? {u + u}
H2 H
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‘Hidden’ CIID structure of the stationary state

Inverting the Fourier transform one finds the CIID representation

(% / du h(u o/ V()
( )
u l1—u
where V(u)=D ( + )
H2 H1
1—
and h(u) = Aufi=t (1 — u)Re? {u + u}
H2 M1

Since fo u)du =1, the function h(u) can be interpreted as the PDF of
the random varlable u € [0,1] — the fraction of time each particle
spends in p phase

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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All observables — exactly solvable

Using the explicit CIID structure of the stationary joint PDF

Po() = / dl h(u HPO (x]u)

all observables in the correlated NESS can be computed explicitly and
they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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All observables — exactly solvable

Using the explicit CIID structure of the stationary joint PDF

Po() = / dl h(u HPO (x]u)

all observables in the correlated NESS can be computed explicitly and
they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

For example, the extreme value statistics (EVS):

P(My = w, N) = o ()

S.N. Majumdar Dynamically Emergent Correlations



All observables — exactly solvable

Using the explicit CIID structure of the stationary joint PDF

Po() = / dl h(u HPO (x]u)

all observables in the correlated NESS can be computed explicitly and
they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
For example, the extreme value statistics (EVS):
w
P(My=w,N) - \/Ian<\/|nN>

where the exact scaling function (with Ry = 71 and R, = 72):

f(z)=B23 (17%22>R271 (%2171> o with /R, <z < /R,

— a new extreme value distribution of strongly correlated random
variables with a finite support
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EVS with a finite support: Universality

. I = Theoretial ! — Thesretical
’ ’VH .\‘ F % a=01 m] % a=01 i
— ’ ) i # a=04 H B oa=04 I
H ’ L} g | % =06 g4l w ae06 J
;'/- i ® a=09 & N =00 4
& f " T, £ . ‘ J
‘1.‘,?' = Theoretcal ‘ ‘ | “ ! {
=1 r #® a0l h. -\ - (] f
| # a=04 ] w 4 -~ &
RS Seersreraen, Sy
of 2
12 13 14 15 16 L 08 i 05 06 07
Mo/ [y Moy

The exact scaling function for the distribution of the scaled k-th
maximum M,

f(z) = B2} (1 . %)Rz_l <R21 . 1>R1_1 with VR, < z < /R,

The scaling function f(z) — universal, i.e,., same for all M 'sind =1
and also for alld > 1

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)
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Experimental results:

[set-up: S. Ciliberto]

e colloidal particles in synchronized harmonic traps

e particles are immersed in fluid = long-range hydrodynamic interaction
(neglected in the theoretical model)
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Experimental results on C,

C2 versus k2 at k1=1.44

1.4 T
o C2x,r=0.47

1.2 § C2, r=0.47
—C2t, r=0.47

1F ¥ Cc2,r=1.88

---C2t, r=1.88

0.8

o~

0.6

0.4

0.2

0
1.2

(2 %)

00
r

Theoretical prediction [for 1 = r, = r and with Ry = Trn and R, = T I:

G= —1 [S. Ciliberto, unpublished data]

(/1,2 - /L1)2(2 + 3R1 + 3R2 + 4R1 Rz)
(2+ R+ R2)(2r + p1 + p2)?
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Experimental results on M;:

a)

k1=0.61, k2=0.24, r=0.47

M, /og
r=0.188,k1=0.17, k2=1.32

— n—2
a

—— N=2 theory

| N=4 theory
| —— N=8 theor

log

10

s 10

b) Mo
r=1.5, k1=0.13,k2=1.25

|——n=4 theory]|
N=8 theor

Experiments with a finite number of colloidal particles in an optical trap

= up to N = 8 particles [S. Ciliberto, unpublished data]
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Two other models with CIID structure

L (e + ay?
Sma’(x + ay

[ N
—ma’(x —a)®

WD) = =@ [y Initial state

1'%0)

|

Unitary evolution

211> =(0) =(12> x Reset at a rate 7

N noninteracting particles (bosons) in a harmonic trap
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Two other models with CIID structure

Smorx +a?

WD) = =@ [y Initial state

1'%0)

Unitary evolution

=21 =(0) =(22) x

Reset at a rate r-

N noninteracting particles (bosons) in a harmonic trap

(1) Model 1 (Classical): The center of the harmonic trap performs a
stochastic motion = drives the system into a correlated NESS

Sabhapandit & S.M. J. Phys. A.: Math. Theor. 57, 335003 (2024)

S.N. Majumdar Dynamically Emergent Correlations



Two other models with CIID structure

211> =(0) =(12> x Reset at a rate 7

N noninteracting particles (bosons) in a harmonic trap

(1) Model 1 (Classical): The center of the harmonic trap performs a
stochastic motion = drives the system into a correlated NESS

Sabhapandit & S.M. J. Phys. A.: Math. Theor. 57, 335003 (2024)
(2) Model 2 (Quantum): N noninteracting bosons in the ground state of
a harmonic trap whose center is quenched from +a to —a, evolves

unitarily for a random time and then the state is reset to the ground state
with center at +a — drives the system into a correlated NESS

Kulkarni, S.M. & Sabhapandit, J. Phys. A: Math. Theor. 58, 105003 (2025)
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Two other models with CIID structure

=21 =(0) =(22) x

In both models, the NESS has the CIID (conditionally independent and
identically distributed) structure

N

PSt(XleX2’ CeXN) = /:>Q du h(u) HPO(XI|U)

- i=1

This CIID structure makes the problem solvable for various observables
such as average density, spacing distribution, extreme statistics, full
counting statistics etc.

S.N. Majumdar Dynamically Emergent Correlations



Summary and Conclusion

e Stochastic fluctuation of the common environment

= strong emerging correlations between particles
e Exactly solvable example: switching harmonic trap

e The NESS has a CIID structure
— Several physical observables are exactly computable and have rich
interesting behaviors, despite being a strongly correlated system

e Comparison with experiments on colloidal particles in an optical trap

e Easily generalisable to a whole new class of solvable correlated gases in
their nonequilibrium stationary state — ballistic particles, Lévy flights,
harmonic potential with a stochastic center, noninteracting bosons, ..

= all have this CIID structure = Exactly solvable

S.N. Majumdar Dynamically Emergent Correlations
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