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Question: what are deep neural networks?

Deep Learning (DL) ≈ multilayered neural network (NN) is becoming the
most popular machine learning (ML) model, but
▶ what is machine learning?
▶ what is a deep neural network (DNN)?
▶ how is such as network trained (i.e., the learning procedure)?
▶ is there any theory for DL, and if yes, how far is the theory from

practice?

Credit: most materials in this part are borrowed from [HH19].

1Catherine F. Higham and Desmond J. Higham. “Deep Learning: An Introduction for Applied Mathematicians”. In: SIAM Review 61.4 (Jan. 2019), pp. 860–891
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Example: binary classification of points in R2

Figure: Labeled data points x ∈ R2. Circles denote
points in class C1. Crosses denote points in class C2.

▶ build a model/function f (from above
historical data) that takes any points x ∈ R2

and returns C1 or C2

▶ logistic regression: f (x) = σ(w⊤x + b) for

w ∈ R2 and b ∈ R to be determined, and
sigmoid function σ(t) = 1

1+e−t

Figure: Sigmoid function.

▶ “learn” or estimate parameters w, b from
data/samples, by minimizing some cost
function (e.g., negative likelihood, MSE)

▶ predict x ∈ C1 if f (x) < 1/2 and x ∈ C2
otherwise.
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Neural networks are nothing but “cascaded” logistic regressors

▶ logistic regression f (x) = σ(w⊤x + b) ∈ R for w ∈ R2,
b ∈ R extends to

f (x) = σ(Wx + b) ∈ RN W ∈ RN×2, b ∈ RN (1)

and σ(·) applied entry-wise: this is one layer of a DNN

▶ repeat this to make the network deep, with possibly
different width in each layer

Layer 1
(Input layer)

Layer 2

Layer 3

Layer 4
(Output layer)

Figure: A network with four layers.

▶ σ(W2x + b2) ∈ R2, σ (W3σ(W2x + b2) + b3) ∈ R3

▶ f4L−NN(x) = σ (W4σ (W3σ(W2x + b2) + b3) + b4) ∈ R2

Define the label/target output as

y(xi) =



[
1
0

]
xi ∈ C1,

[
0
1

]
xi ∈ C2.

(2)

the MSE cost function writes Cost (W2, W3, W4, b2, b3, b4) =
1
10 ∑10

i=1 ∥y(xi)− f4L−NN(xi)∥2
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Figure: Visualization of output from a multilayered neural network applied to the data.

▶ from training to test!
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General formulation and gradient decent training of DNN

We can define the network in a layer-by-layer fashion:

a0 = x ∈ RN0 , aℓ = σ (Wℓaℓ−1 + bℓ) ∈ RNℓ , ℓ = 1, . . . , L,

with weights Wℓ ∈ RNℓ×Nℓ−1 and bias b ∈ RNℓ at layer ℓ.
▶ Wℓs and bℓs obtained by minimizing cost function on a given training set {(xi, yi)}n

i=1 of size n:

Cost =
1
n

n

∑
i=1

1
2
∥yi − aL(xi)∥2. (3)

▶ update using (stochastic) gradient descent, for parameter P,

P(t + 1) = P(t)− η∇PCost(P(t)). (4)
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Matlab code to train a simple NN

%%%%%%% DATA %%%%%%%%%%%
x1 = [0.1,0.3,0.1,0.6,0.4,0.6,0.5,0.9,0.4,0.7]; x2 = [0.1,0.4,0.5,0.9,0.2,0.3,0.6,0.2,0.4,0.6]; y = [ones(1,5) zeros(1,5); zeros(1,5) ones(1,5)];

% Initialize weights and biases
W2 = 0.5*randn(2,2); W3 = 0.5*randn(3,2); W4 = 0.5*randn(2,3); b2 = 0.5*randn(2,1); b3 = 0.5*randn(3,1); b4 = 0.5*randn(2,1);

% Forward and Back propagate
eta = 0.05; % learning rate
Niter = 1e6; % number of SG iterations
savecost = zeros(Niter,1); % value of cost function at each iteration
for counter = 1:Niter

k = randi(10); % choose a training point at random
x = [x1(k); x2(k)];
% Forward pass
a2 = activate(x,W2,b2); a3 = activate(a2,W3,b3); a4 = activate(a3,W4,b4);
% Backward pass
delta4 = a4.*(1-a4).*(a4-y(:,k)); delta3 = a3.*(1-a3).*(W4’*delta4); delta2 = a2.*(1-a2).*(W3’*delta3);
% Gradient step
W2 = W2 - eta*delta2*x’; W3 = W3 - eta*delta3*a2’; W4 = W4 - eta*delta4*a3’; b2 = b2 - eta*delta2; b3 = b3 - eta*delta3; b4 = b4 - eta*delta4;
% Monitor progress
newcost = cost(W2,W3,W4,b2,b3,b4) % display cost to screen
savecost(counter) = newcost;

end

% Show decay of cost function
semilogy([1:1e4:Niter],savecost(1:1e4:Niter))

function costval = cost(W2,W3,W4,b2,b3,b4)
costvec = zeros(10,1);
for i = 1:10

x =[x1(i);x2(i)];
a2 = activate(x,W2,b2); a3 = activate(a2,W3,b3); a4 = activate(a3,W4,b4);
costvec(i) = norm(y(:,i) - a4,2);

end
costval = norm(costvec,2)^2;

end % of nested function

end
Z. Liao (EIC, HUST) RMT4DL August 4, 2025 9 / 44



Matlab code to train a simple NN

function y = activate(x,W,b)
%ACTIVATE Evaluates sigmoid function.
%
% x is the input vector, y is the output vector
% W contains the weights, b contains the shifts
%
% The ith component of y is activate((Wx+b)_i)
% where activate(z) = 1/(1+exp(-z))

y = 1./(1+exp(-(W*x+b)));

Figure: Vertical axis shows a scaled value of the cost function. Horizontal axis shows the iteration number. Here we used
the stochastic gradient descent to train the aforementioned simple network.
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Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:

− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)
− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.
▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:

− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)
− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.
▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:

− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)
− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.
▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:
− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)

− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.
▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:
− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)
− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.
▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:
− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)
− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.

▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Some commonly used tricks in DNN

▶ stochastic gradient descent: sample (without replacement) a mini-batch for gradient 1
B ∑B

i=1 ∇PCost(xi)

▶ convolution neural network (CNN): repeatedly apply small linear kernel, or filter, across portions of
input data, making weight matrices sparse and highly structured

1 −1
1 −1

1 −1
1 −1

1 −1

 ∈ R5×6. (5)

▶ different choice of activation and/or cost function:
− rectified linear unit, or ReLU, activation: σ(t) = max(t, 0)
− cross-entropy cost function:

−
N

∑
i=1

log

 e
v{i}

li

∑K
j=1 ev{i}

j

 . (6)

▶ dropout, batch normalization, and other types of normalization, etc.
▶ use of tensors instead of vectors or matrices for input data or intermediate representations

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 11 / 44



Outline

1 An Introduction Deep Learning for Mathematicians

2 Important Theoretical Questions for DL

3 Random (and Not-so Random) Matrix Theory in DL
Shallow and deep NN with random weights
NN with nonrandom weights

4 Conclusion

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 12 / 44



What do we care about DL, from a theoretical perspective?

What does deep learning theory care about and why?
▶ theoretical guarantee: explanation of when and why DL works in some cases, and not in others

▶ theory-guided design principles for more efficient DNN (e.g., better performant, less computational
demand, more novel ideas on how to make DL work better, etc.)

▶ too many “tuning” hyperparameters in DNN design: number of layers, operator, width, and activation
in each layer, different tricks, etc.

▶ for safety-related applications (e.g., self driving, healthcare), we need theory-supported DL
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A (too) brief review of DL theory

From an approximation theoretical perspective:
▶ universal approximation theorem: for any (somewhat regular, e.g., Lebesgue p-integrable) function of

interest f : Rp×K and given ε > 0, there exists a fully-connected ReLU network F with width at least m
such that

∫
Rp ∥f (x)− F(x)∥pdx < ε.

▶ different type of input space, e.g., x = [x1, . . . , xp] ⊂ [0, 1]p, function or data on graph?
▶ how activation, width, depth, etc. come into play, in particular, depth versus width?
▶ LIMITATION: do NOT provide recipe for construction, but that such a construction is possible

From an optimization perspective:
▶ DNN training involves non-convex (and possibly non-smooth) optimization: challenging!
▶ empirically simple (stochastic) gradient descent seems to work well, WHY?
▶ GUESS: DL landscape has nice properties?
▶ e.g., how to converge better and faster?
▶ IMPORTANT: pure optimization deals only with training, and NOT test/generalization
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A (too) brief review of DL theory

From a statistical perspective:
▶ generalization theory: for which type of data, and by using which ML model (trained with which

algorithm), can we get a high probability error bound of which metric

▶ Rademacher complexity, PAC-Bayes bound, etc.
▶ Question: why DL models generalize so well despite high model complexity (i.e., over-parameterized)?

1 nice property of the (over-parameterized) DL model: Neural Tangent Kernel [JGH18]
2 inductive bias due to algorithm: Double Descent or Benign Overfitting [BMR21]

A Good DL theory should cover both optimization and generalization!

2Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and generalization in neural networks”. In: Advances in neural
information processing systems. 2018, pp. 8571–8580

3Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. “Deep Learning: A Statistical Viewpoint”. In: Acta Numerica 30 (May 2021), pp. 87–201
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Neural Tangent Kernel

▶ kernel K(·, ·) : Rp × Rp → R, similarity measure between input data points in Rp

▶ examples include:

− linear kernel K(x, y) = x⊤y, cosine kernel = x⊤y
∥x∥·∥y∥ , Gaussian (RBF) kernel = exp(∥x − y∥2/γ2)

− kernel induced by NN: K(x, y) = σ(Wx)⊤σ(Wy), parameterized by the network (e.g., weights and activations)

▶ PS: kernels are widely studied in the ML literature, we know quite a lot (reproducing kernel Hilbert
space, RKHS, etc.)
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Example of a two-layer NN model

xi ∈ Rp

σ

σ

σ

σ

σ

hidden-layer of N neurons

yi ≈ f (xi) = β⊤σ(Wxi)
first layer weights W ∈ RN×pσ(Wxi) ∈ RN

▶ Given training set {(xi, yi)}n
i=1 with xi ∈ Rp and yi ∈ R

f (x; θ) = β⊤σ(Wx) =
n

∑
ℓ=1

βℓσ(w⊤
ℓ x), θ = [β1, . . . , βN ; w1, . . . , wN ]. (7)

▶ linearization of the network at initialization, by Taylor expansion

f (x; θ) ≈ flin(x; θ) = f (x; θ0) + (θ− θ0)
⊤ ∇θ f (x; θ0) . (8)

and
flin(x; θ0 + δ) = f (x; θ0) + δ⊤ϕNTK(x), Ke−NTK(x, y) = ϕNTK(x)⊤ϕNTK(y). (9)

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 17 / 44



Example of a two-layer NN model

xi ∈ Rp

σ

σ

σ

σ

σ

hidden-layer of N neurons

yi ≈ f (xi) = β⊤σ(Wxi)
first layer weights W ∈ RN×pσ(Wxi) ∈ RN

▶ Given training set {(xi, yi)}n
i=1 with xi ∈ Rp and yi ∈ R

f (x; θ) = β⊤σ(Wx) =
n

∑
ℓ=1

βℓσ(w⊤
ℓ x), θ = [β1, . . . , βN ; w1, . . . , wN ]. (7)

▶ linearization of the network at initialization, by Taylor expansion

f (x; θ) ≈ flin(x; θ) = f (x; θ0) + (θ− θ0)
⊤ ∇θ f (x; θ0) . (8)

and
flin(x; θ0 + δ) = f (x; θ0) + δ⊤ϕNTK(x), Ke−NTK(x, y) = ϕNTK(x)⊤ϕNTK(y). (9)

Z. Liao (EIC, HUST) RMT4DL August 4, 2025 17 / 44



The big picture of NTK

▶ around initialization θ ≈ θ0, linearized network output

f (x; θ) ≈ flin(x; θ0 + δ) = f (x; θ0) + δ⊤ϕNTK(x), Ke−NTK(x, y) = ϕNTK(x)⊤ϕNTK(y), (10)

Now, if there exists a neighborhood B(θ0) of θ0 such that
1 for any θ ∈ B(θ0), we have f (x; θ) ≈ flin(x; θ), and closeness in cost function
2 it suffices to optimize in B(θ0) to reach an approx. global min, i.e., f (x; θ0) ≈ flin(x; θ0) ≈ 0
3 from an optimization viewpoint, optimizing f (x; θ) ≈ optimizing flin and will not leave B(θ0)

To reach the above is over-parameterization and/or proper random initialization, with small stochasticity
(e.g., small learning rate or full batch GD)
▶ cost function (e.g., MSE) Cost(fθ(x), y) ≈ Cost(flin(x), y) linear (in the parameter θ) and convex!
▶ for MSE, Cost(flin(X), y) = 1

n ∑n
i=1(flin(xi)− yi)

2, nothing but linear regression of type
Cost = ∥y′ − ΦNTK(X)⊤δ∥2 with y′i = f (xi; θ0)− y
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Precise Characterization of Double Descent Curves

▶ larger model, the better?! Maybe, due to double
descent [Has+22] and implicit (norm-based?) bias

▶ case of linear regression model
Cost = 1

n ∑n
i=1(β⊤xi − yi)

2, with β, xi ∈ Rp,
depend on the sign n − p, either in the
over-parameterized or under-parameterized
(with min-norm solution) regime

▶ generalization risk shows a double descent curve

4Trevor Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Interpolation”. In: The Annals of Statistics 50.2 (Apr. 2022), pp. 949–986
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Precise Characterization of Double Descent Curves

▶ case of linear regression model
Cost = 1

n ∑n
i=1(β⊤xi − yi)

2, with β, xi ∈ Rp,
depend on the sign n − p, either in the
over-parameterized or under-parameterized
(with min-norm solution) regime

▶ generalization risk shows a double descent
curve [Has+22]

▶ very understandable for RMT experts:
▶ ridgeless least squares β̂ = (XXT)−1Xy or

β̂ = X(X⊤X)−1y and there is a singular behavior
in the spectrum at p = n

▶ tons of extensions: relaxing assumption, (slightly)
more involved models, etc., less progress in the
sense of deep though
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Outline

1 An Introduction Deep Learning for Mathematicians

2 Important Theoretical Questions for DL

3 Random (and Not-so Random) Matrix Theory in DL
Shallow and deep NN with random weights
NN with nonrandom weights

4 Conclusion
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Technical challenges and opportunities for RMT in DL theory

▶ entry-wise non-linearity and depth: some successful efforts

▶ gradient descent leads to involved correlation structure: even a single step makes things complicated
▶ more involved DNN structure (convolution, recurrent, Attention core in Large Language Models, etc.)
▶ statistical assumption on data to work with: largely open!
▶ beyond the linear n ∼ p ∼ N regime
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Two-layer network with random first layer

xi ∈ Rp

σ
σ
σ
σ
σ

hidden-layer of N neurons

f (xi) = β⊤σ(Wxi)
W ∈ RN×pσ(Wxi) ∈ RN

▶ for random (first-layer) weights W ∈ RN×p having say i.i.d. standard Gaussian entries

▶ get second-layer β by minimizing Cost = 1
n ∑n

i=1(yi − β⊤σ(Wxi))
2 + γ∥β∥2 for some regularization

parameter γ > 0, then

β ≡ 1
n

Σ

(
1
n

Σ⊤Σ + γIn

)−1
y, (11)

▶ training MSE (on the given training set (X, y)) reads

Etrain =
1
n
∥y − Σ⊤β∥2

F =
γ2

n
yQ2(γ)y, Q(γ) ≡

(
1
n

Σ⊤Σ + γIn

)−1
(12)

▶ Similarly, the test MSE on a test set (X̂, ŷ) ∈ Rp×n̂ × Rd×n̂ of size n̂: Etest =
1
n̂∥ŷ − Σ̂

⊤
β∥2

F, Σ̂ = σ(WX̂).
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hidden-layer of N neurons

f (xi) = β⊤σ(Wxi)
W ∈ RN×pσ(Wxi) ∈ RN

▶ for random (first-layer) weights W ∈ RN×p having say i.i.d. standard Gaussian entries
▶ get second-layer β by minimizing Cost = 1

n ∑n
i=1(yi − β⊤σ(Wxi))

2 + γ∥β∥2 for some regularization
parameter γ > 0, then
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n

Σ
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1
n

Σ⊤Σ + γIn

)−1
y, (11)
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1
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Nonlinear resolvent

Q(γ) =

(
1
n

σ(WX)⊤σ(WX) + γIn

)−1
(13)

▶ nonlinear Σ⊤ = σ(WX)T still has i.i.d. columns, but

▶ its i-th column σ([XTWT]·i) no longer has i.i.d. or linearly dependent entries
▶ trace lemma does not apply

Lemma (Concentration of nonlinear quadratic form, [LLC18, Lemma 1] )

For w ∼ N (0, Ip), 1-Lipschitz σ(·), and A ∈ Rn×n, X ∈ Rp×n such that ∥A∥, ∥X∥ bounded, then

P

(∣∣∣∣ 1n σ(w⊤X)Aσ(X⊤w)− 1
n

tr AK
∣∣∣∣ > t

)
≤ Ce−cn min(t,t2)

for some C, c > 0, p/n ∈ (0, ∞) with K ≡ KXX ≡ Ew∼N (0,Ip)[σ(X
⊤w)σ(w⊤X)] ∈ Rn×n.

▶ K is in fact the conjugate kernel (CK) matrix
▶ for well-behaved (e.g., Lipschitz) non-linearity, trace lemma holds in this nonlinear case
▶ get deterministic equivalent for Q, establish (limiting) eigenvalue distribution of 1

n σ(WX)⊤σ(WX), etc.
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Theorem (Resolvent for nonlinear Gram matrix, [LLC18])

Let W ∈ RN×p be a random matrix with i.i.d. standard Gaussian entries, σ(·) be 1-Lipschitz, and X ∈ Rp×n be of
bounded operator norm. Then, as n, p, N → ∞ at the same pace, for Q = (σ(X⊤WT)σ(WX)/n + γIn)−1 with γ > 0,

∥E[Q]− Q̄∥ → 0, Q̄ ≡
(

N
n

K
1 + δ

+ γIn

)−1

for δ the unique positive solution to δ = 1
n tr Q̄K and K = Ew∼N (0,Ip)[σ(X

⊤w)σ(w⊤X)] ∈ Rn×n.

Corollary (Asymptotic training and test MSEs)

Under the setting and notations of Theorem 2, for bounded X, X̂, y, ŷ, then the training and test MSES, satisfy, as
n, p, N → ∞, we have Etrain − Ētrain → 0 and Etest − Ētest → 0 with

Ētrain =
γ2

n
y⊤Q̄

(
1
N tr Q̄K̄Q̄

1 − 1
N tr K̄Q̄K̄Q̄

K̄ + In

)
Q̄y

Ētest =
1
n̂
∥ŷ − K̄⊤

XX̂Q̄y∥2
F +

1
N y⊤Q̄K̄Q̄y

1 − 1
N tr K̄Q̄K̄Q̄

(
1
n̂

tr K̄X̂X̂ − 1
n̂

tr(In + γQ̄)(K̄XX̂K̄⊤
XX̂Q̄)

)

5Cosme Louart, Zhenyu Liao, and Romain Couillet. “A Random Matrix Approach to Neural Networks”. In: The Annals of Applied Probability 28.2 (2018),
pp. 1190–1248
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Ētrain =
γ2

n
y⊤Q̄

(
1
N tr Q̄K̄Q̄

1 − 1
N tr K̄Q̄K̄Q̄

K̄ + In

)
Q̄y
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Numerical results
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Ētrain
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Numerical results: double descent
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Some further RMT investigations on the two-layer model

Eigenspectra of 1
n σ(WX)⊤σ(WX):

▶ [PW17] first guess expression of the eigenvalue behavior

▶ [BP21]: eigenvalue distribution of 1
n σ(WX)⊤σ(WX) for W, X having sub-gaussian entries

1 for “centered” σ(·) with respect to Gaussian measure: E[σ(ξ)] = 0 for ξ ∼ N (0, 1)
2 take a rather explicit form (3rd order poly ST equation) and depends on σ only via E[σ2(ξ)] and E[σ(ξ)ξ].

▶ [BP22]: behavior of largest eigenvalue of 1
n σ(WX)⊤σ(WX) for sub-gaussian W, X and centered σ(·)

▶ despite being a white model, spikes may appear!

1 if E[ξ2σ(ξ)] = 0, then no spike
2 otherwise, at most two spikes

Question: what happen if either W or X has some structure? Any different phase transition behavior?

6Jeffrey Pennington and Pratik Worah. “Nonlinear random matrix theory for deep learning”. In: Advances in Neural Information Processing Systems. 2017,
pp. 2634–2643

7Lucas Benigni and Sandrine Péché. “Eigenvalue Distribution of Some Nonlinear Models of Random Matrices”. In: Electronic Journal of Probability 26.none (Jan.
2021), pp. 1–37

8Lucas Benigni and Sandrine Péché. Largest Eigenvalues of the Conjugate Kernel of Single-Layered Neural Networks. Jan. 2022. arXiv: 2201.04753 [cs, math]
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▶ [BP21]: eigenvalue distribution of 1

n σ(WX)⊤σ(WX) for W, X having sub-gaussian entries

1 for “centered” σ(·) with respect to Gaussian measure: E[σ(ξ)] = 0 for ξ ∼ N (0, 1)
2 take a rather explicit form (3rd order poly ST equation) and depends on σ only via E[σ2(ξ)] and E[σ(ξ)ξ].

▶ [BP22]: behavior of largest eigenvalue of 1
n σ(WX)⊤σ(WX) for sub-gaussian W, X and centered σ(·)

▶ despite being a white model, spikes may appear!

1 if E[ξ2σ(ξ)] = 0, then no spike
2 otherwise, at most two spikes

Question: what happen if either W or X has some structure? Any different phase transition behavior?

6Jeffrey Pennington and Pratik Worah. “Nonlinear random matrix theory for deep learning”. In: Advances in Neural Information Processing Systems. 2017,
pp. 2634–2643

7Lucas Benigni and Sandrine Péché. “Eigenvalue Distribution of Some Nonlinear Models of Random Matrices”. In: Electronic Journal of Probability 26.none (Jan.
2021), pp. 1–37
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Some further RMT investigations on random DNNs

▶ design of DNN to achieve dynamical isometry, accelerate training at the beginning stage of training
▶ Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. “Resurrecting the Sigmoid in Deep Learning through Dynamical Isometry:

Theory and Practice”. In: Advances in Neural Information Processing Systems. Vol. 30. NIPS’17. Curran Associates, Inc., 2017,
pp. 4785–4795

▶ Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. “Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables
Signal Propagation in Recurrent Neural Networks”. In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80.
Proceedings of Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 873–882

▶ Lechao Xiao et al. “Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural
Networks”. In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 5393–5402

▶ Dar Gilboa et al. “Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs”. In: arXiv (2019). eprint: 1901.08987

▶ understand how weight distribution interact with activation in DNNs
▶ Leonid Pastur. “On Random Matrices Arising in Deep Neural Networks. Gaussian Case”. In: arXiv (2020). eprint: 2001.06188

▶ Leonid Pastur and Victor Slavin. “On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case”. In: Random Matrices:
Theory and Applications 12.01 (Jan. 2023), p. 2250046

▶ Leonid Pastur. “Eigenvalue Distribution of Large Random Matrices Arising in Deep Neural Networks: Orthogonal Case”. In: Journal of
Mathematical Physics 63.6 (2022), p. 063505

▶ Zhou Fan and Zhichao Wang. “Spectra of the Conjugate Kernel and Neural Tangent Kernel for Linear-Width Neural Networks”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 7710–7721
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Gradient descent dynamics on linear regression model

▶ gradient descent dynamics (GDDs) of ridge regression learning (i.e., of a single-layer linear network)

▶ given training data matrix X = [x1, . . . , xn] ∈ Rp×n with associated labels/targets y = [y1, . . . , yn] ∈ Rn,
w ∈ Rp is learned via gradient descent by minimizing the (ridge-regularized) squared loss

L(w) =
1

2n
∥y − X⊤w∥2 +

γ

2
∥w∥2 (14)

for some regularization penalty γ ≥ 0.
▶ gradient given by ∇L(w) = − 1

n X(y − X⊤w) + γw so that, for small gradient descent steps (or learning
rate) α, continuous-time approximation (in fact, gradient flow) of the time evolution w(t) of w:

∂w(t)
∂t

= −α∇L(w) =
α

n
Xy − α

(
1
n

XX⊤ + γIp

)
w

solution explicitly given by

w(t) = e−αt( 1
n XX⊤+γIp)w0 +

(
Ip − e−αt( 1

n XX⊤+γIp)
)

w∞ (15)

with w0 = w(t = 0) (the initialization of gradient descent) and

w∞ =

(
1
n

XX⊤ + γIp

)−1 1
n

Xy (16)

the ridge regression solution with regularization parameter γ.
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Some RMT results on GDD in classification

▶ to study statistical evolution of w(t), consider binary Gaussian mixture model for input data

C1 : xi ∼ N (−µ, Ip) C2 : xi ∼ N (µ, Ip)

with associated labels yi = −1 and yi = 1, respectively.

▶ study training and test misclassification error rates as

P(x⊤i w(t) > 0 | yi = −1), and P(x̂⊤w(t) > 0 | ŷ = −1),

for x̂ ∼ N (−µ, Ip) a new test datum (independent of the training set (X, y)) of genuine label ŷ = −1.
▶ we can of course consider different statistical model and/or different task (e.g., regression)
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Some RMT results on GDDs

Theorem (Training and test performance of GDD, [LC18])

For a random initialization w0 ∼ N (0, σ2Ip/p) independent of X, x a column of X of mean µ and x̂ an independent
copy of x, as n, p → ∞ with p/n → c ∈ (0, ∞), we have

P(x̂⊤w(t) > 0 | ŷ = −1)− Q
(

Etest√
Vtest

)
→ 0, P(x⊤w(t) > 0 | y = −1)− Q

(
Etrain√
Vtrain

)
→ 0,

almost surely, where

Etest = − 1
2πı

∮
Γ

1 − ft(z)
z

ρm(z) dz
(ρ + c)m(z) + 1

, Vtest =
1

2πı

∮
Γ

[
1
z2 (1 − ft(z))

2

(ρ + c)m(z) + 1
− σ2f 2

t (z)m(z)

]
dz

Etrain = − 1
2πı

∮
Γ

1 − ft(z)
z

dz
(ρ + c)m(z) + 1

, Vtrain =
1

2πı

∮
Γ

[
1
z (1 − ft(z))

2

(ρ + c)m(z) + 1
− σ2f 2

t (z)zm(z)

]
dz − E2

train

with ρ = limp→∞ ∥µ∥2, Γ a positive contour surrounding the support of the Marc̆enko–Pastur law (shifted by γ ≥ 0)
and the points (γ, 0) and (γ + λs, 0) with λs = c + 1 + ρ + c/ρ, ft(z) ≡ exp(−αtz) and m(z) unique ST solution to
c(z − γ)m2(z)− (1 − c − z + γ)m(z) + 1 = 0.
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Some further simplifications

▶ choose the contour Γ as, e.g., rectangle circling around both main bulk and isolated eigenvalue (if any)

This leads to

Etest =
∫ 1 − ft(x + γ)

x + γ
ω(dx) Vtest =

ρ + c
ρ

∫
(1 − ft(x + γ))2ω(dx)

(x + γ)2 + σ2
∫

f 2
t (x + γ)µ(dx)

Etrain =
ρ + c

ρ

∫ 1 − ft(x + γ)

x + γ
ω(dx), Vtrain =

ρ + c
ρ

∫ x(1 − ft(x + γ))2ω(dx)
(x + γ)2 + σ2

∫
xf 2

t (x + γ)µ(dx)− E2
train

where we recall ρ = lim ∥µ∥2, ft(x) = exp(−αtx), µ(x) the MP law

µ(dx) =
√
(x − λ−)+(λ+ − x)+

2πcx
dx + (1 − c−1)+δ(x), (17)

and

ω(dx) ≡
√
(x − λ−)+(λ+ − x)+

2π(λs − x)
dx +

(ρ2 − c)+

ρ
δλs (x) (18)

for λs = c + 1 + ρ + c/ρ the (possible) spike location.

9Zhenyu Liao and Romain Couillet. “The Dynamics of Learning: A Random Matrix Approach”. In: Proceedings of the 35th International Conference on Machine
Learning. Vol. 80. PMLR, 2018, pp. 3072–3081
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Numerical results
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Some further RMT efforts on high-dimensional dynamics

From the statistical physics community: reduces to low-dimensional ODE or SDE
▶ Sebastian Goldt et al. “Dynamics of Stochastic Gradient Descent for Two-Layer Neural Networks in the Teacher-Student Setup”. In:

Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019

▶ Francesca Mignacco et al. “Dynamical Mean-Field Theory for Stochastic Gradient Descent in Gaussian Mixture Classification”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 9540–9550

▶ Rodrigo Veiga et al. “Phase Diagram of Stochastic Gradient Descent in High-Dimensional Two-Layer Neural Networks”. In: Advances
in Neural Information Processing Systems 35 (Dec. 2022), pp. 23244–23255

From the optimization community: how RMT results apply to characterize average-case behavior in
optimization

▶ Courtney Paquette et al. “SGD in the Large: Average-case Analysis, Asymptotics, and Stepsize Criticality”. In: Proceedings of Thirty
Fourth Conference on Learning Theory. PMLR, July 2021, pp. 3548–3626

▶ Courtney Paquette et al. “Halting Time Is Predictable for Large Models: A Universality Property and Average-Case Analysis”. In:
Foundations of Computational Mathematics 23.2 (Apr. 2023), pp. 597–673

And from the RMT community as well
▶ Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. “Online Stochastic Gradient Descent on Non-Convex Losses from

High-Dimensional Inference”. In: Journal of Machine Learning Research 22.106 (2021), pp. 1–51

▶ Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. “High-Dimensional Limit Theorems for SGD: Effective Dynamics and
Critical Scaling”. In: Advances in Neural Information Processing Systems 35 (Dec. 2022), pp. 25349–25362

▶ Gerard Ben Arous et al. High-Dimensional SGD Aligns with Emerging Outlier Eigenspaces. Oct. 2023. arXiv: 2310.03010 [cs, math,
stat]
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▶ Gerard Ben Arous et al. High-Dimensional SGD Aligns with Emerging Outlier Eigenspaces. Oct. 2023. arXiv: 2310.03010 [cs, math,
stat]
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One step gradient beyond random network

▶ extends to wide DNN model via NTK, see, e.g., Y. Du, Z. Ling, R. C. Qiu, Z. Liao, “High-dimensional
Learning Dynamics of Deep Neural Nets in the Neural Tangent Regime”, High-dimensional Learning
Dynamics Workshop, The Fortieth International Conference on Machine Learning (ICML’2023), 2023

▶ however, limited in the NTK and linearized regime
▶ what about nonlinear feature learning during gradient descent (different from initialization)?
▶ empirical observation: spikes appear in the NTK spectra during gradient descent training [FW20]

10Zhou Fan and Zhichao Wang. “Spectra of the Conjugate Kernel and Neural Tangent Kernel for Linear-Width Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 7710–7721
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Two-layer random network after one step training

xi ∈ Rp

σ
σ
σ
σ
σ

hidden-layer of N neurons

f (xi) = β⊤σ(Wxi)
W ∈ RN×pσ(Wxi) ∈ RN

▶ two-layer NN having N neurons, with output f (x) = 1√
N

β⊤σ(Wx), for input x ∈ Rp, first-layer weight

W ∈ RN×p, second-layer weight β ∈ RN , and nonlinear σ

▶ model trained on {(xi, yi)}n
i=1 of size n, by minimizing

Cost =
1

2n

n

∑
i=1

(yi − f (xi))
2 . (19)

▶ first-layer gradient explicitly given by

∂Cost
∂W

= − 1
n

((
1√
N

β

(
y⊤ − 1√

N
β⊤σ(WX)

))
⊙ σ′(WX)

)
X⊤ ∈ RN×p, (20)

with X = [x1, . . . , xn] ∈ Rp×n, and y = [y1, . . . , yn]⊤ ∈ Rn.
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Two-layer random network after one step GD training

▶ consider first step gradient update on W as W1 = W0 +
√

Nη0G0, with

G0 = 1
n

((
1√
N

β0

(
y⊤ − 1√

N
β⊤

0 σ(W0X)
))

⊙ σ′(W0X)
)

X⊤

▶ key observation made in [Ba+22]: under standard assumption and for Gaussian W0, β0 and X, the first
step gradient G0 is approximately of rank one!∥∥∥∥G0 −

E[σ′(ξ)]

n
√

N
β0y⊤X⊤

∥∥∥∥→ 0. (21)

▶ result obtained by (kind of conditioned on X, y and β0) and playing with the randomness in W0
▶ built upon this, results on generalization can be obtained, etc.

11Jimmy Ba et al. “High-Dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation”. In: Advances in Neural Information
Processing Systems. May 2022
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Discussion on the step size and its impact

▶ since ∥W0∥ = O(1), ∥W0∥F =
√

N, and
√

N∥G0∥ = O(1),
√

N∥G0∥F = O(1), may consider:

1 small step η = O(1) (same order in spectral norm): improve over initial CK, but not as good as optimal
linear model

2 large step η = O(
√

N) (same order in Frobenius norm): improve over a class of nonlinear model, match
neural scaling law in some cases

12Jimmy Ba et al. “High-Dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation”. In: Advances in Neural Information
Processing Systems. May 2022
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Conclusion and take-away message

Take-away message:
▶ basics in ML and DL

▶ DL theory: optimization+generalization
▶ some not so fantastic story on neural tangent kernel and double descent
▶ opportunities in RMT for DL:

1 from shallow to deep random NNs
2 from random to non-so-random NNs

▶ what is a good theory for DNN?
▶ Model and data/task dependent, can be used to guild DNN model design.
▶ A recent (short) review focusing on RMT4DL: Zhenyu Liao and Michael W. Mahoney. Random Matrix

Theory for Deep Learning: Beyond Eigenvalues of Linear Models. 2025. arXiv: 2201.04753 [cs, math]
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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