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1. Riemann Hilbert problems



Riemann Hilbert problem

e Jump problem for a piecewise analytic function
=
e
Scalar RH problem (additive jump):

RH-f1 f:C\ T — C is analytic
RH-f2 f has boundary values on both sides of I, and

fr=f +v onl
RH-f3 f(z) = O(z7!) as z — oo.

Unique solution is




Matrix Riemann-Hilbert problem for OPs

Given weight w on R and n € N, find 2 x 2 matrix valued
function Y(z) such that

RH-Y1 Y :C\ R — C?*2 is analytic.
RH-Y2 Y has boundary values on R, and and

1 w
Y+—Y<0 1>, on R.

Zl’l

1 0
RH-Y3 Y(z) = (I + O(z™1)) (0 ,—n | a5 Z =0,
Unique solution is given in terms of orthogonal polynomials

/ Po(x)x*w(x)dx =0 k=0,1,...,n—1,

—00



Fokas, Its, Kitaev RH problem for OP

RH problem has the unique solution

Pu(2) 2i71'l /OO P”iszwz(s)ds
Y(Z) = _gj
=2, %1 Poa(2) _'Yn_zl/_ I%_;(j);‘/(S)ds

where 7,_1 is the leading coefficient of the orthonormal
polynomial of degree n — 1.
Fokas-Its-Kitaev (1992)



2. Steepest descent analysis



Deift-Zhou steepest descent analysis

Deift-Zhou (1993) steepest descent analysis for RH problem
for A on contour ¥4, depending on parameter, say n, and we
are interested in n — oo.

@ Sequence of explicit transformations A— B+ ---— R
leading to a RH problem for R on contour %y

RH-R1 R:C\ g — C?*? is analytic.
RH-R2 R has boundary values on X satisfying

R+ = R_JR, on ZR,

where Jr depends on n with as n — oo,

both in [2(Xg) and L*®°(XR).
RH-R3 R(z) =1+ 0O(z7!) as z — oo.

As a result

R(z) -1 asn— o0
[RG) )

uniformly for z in compact subsets of C \ > .



RH problem with varying exponential weight

We apply Deift/Zhou steepest descent analysis to following
Deift-Kriecherbauer-McLaughlin-Venakides-Zhou (1999)

RH-Y1 Y :C\ R — C?*2 is analytic,

1 e7nV(X)
RH-Y2 Yi(x) = Y_(x) (0 1 ) on R,

Zn

RH-Y3 Y(z) = (1+ 0 (z71)) (0 Z(_),,) as z — o0.

Sequence of transformations

( YoT—SHR )

Y — T : normalization by means of the equilibrium measure

T — S : opening of lenses, turning oscillations into
exponentially decaying entries

S — R : construction of global and local parametrices



Equilibrium measure in external field

wy is the probability measure that minimizes the logarithmic
energy in the external field

[ 1082 dutduty) + [ Vixdut)

Ix =yl

@ For real analytic V, there is a density )y which is
supported on a finite union of intervals, and that is real
analytic on the interior of each interval.

Deift-Kriecherbauer-McLaughlin (1999)



Equilibrium measure in external field

wy is the probability measure that minimizes the logarithmic
energy in the external field

[ 1082 dutduty) + [ Vixdut)

Ix =yl

@ For real analytic V, there is a density )y which is
supported on a finite union of intervals, and that is real
analytic on the interior of each interval.

Deift-Kriecherbauer-McLaughlin (1999)
In many situations it is important that the Cauchy transform
of 1y satisfies quadratic equation

{ JEZCH V’éz)r _ <V2())2 -/ Vi@ = VIS g, ()

s—Zz Z—S

=Qv(2)

and Qy is a polynomial in case V is a polynomial.



First transformation Y — X

We use g-function

g(2) = / l0g(z — $)duy (s)

Define for suitable constant /,

eht/2 0 e—ng(z)—nt/2 0
T(Z) = ( 0 e—n€/2> Y(Z) < 0 eng(z)+n€/2>



First transformation Y — X

We use g-function

g(2) = / l0g(z — $)duy (s)

Define for suitable constant /,
eht/2 0 e—ng(z)—nt/2 0
T(Z) = ( 0 e—n€/2> Y(Z) < 0 eng(z)+n€/2>

T satisfies a new RH problem. Jumps take different shape
on the support of 11y, and outside the support.

e Suppose supp(y) U[azj 1, 32j]-

e Each end-point has <p-funct|on



RH problem for T

T satisfies

RH-T1 T:C\R — C? is analytic,
RH-T2 T has boundary values on R satisfying

e2Mpan, + 1
RH-T2a T, =T_ 0 2npan,— | ON SUPP v,

—2n¢y
RH-T2b T, = T_ (é € . O> on (—o0, a1).

for j=1,...,N—1,

e~ 2minw; e2n<p2j> On(‘32j7 32j+1)
0 e27rinwj .
with w; = NV([32J'+17 0)),

RH-T2c T, = T_ <

1 efanDZN
RH-T2d T, =T_ (o 1 > on (ay; 00),

RH-T3 [ T(z)=1+0(z1 ] as z — oo. (normalization)




1 e 2m e2n2.+ 1 1 e 22
0 1 0 e2ne2,— 0 1

ai ap

° 1 > 0 for x < ay,
° p2

® ¢y = —yo _ is purely imaginary on (a, a>)

(x)
(x)

> 0 for x > ap,



Second transformation T — S

Open a lens around [a;, a] and define

§=T <—eg”¢2 (1)> in upper part of the lens
S=T <e21‘ﬁ2 (1)> in lower part of the lens

S = T outside the lens

Jumps in the RH problem for S
1 0
e2nv2 1
1 e 2 1 e 2n¥2
1) 1)

RN
2




Global parametrix

Parametrices are approximations to S.

Away from endpoints S is well-approximated by the global
parametrix M: it is the solution to the RH problem where we
forget about the non-constant jumps

RH-M1 M : C\ [a1,a2] — C?*2 is analytic.

RH-M2 M+ = M_ (_01 é) on (31,32).

RH-M3 M(z) =1+ O (z7!) as z — oc.



Global parametrix

Parametrices are approximations to S.

Away from endpoints S is well-approximated by the global
parametrix M: it is the solution to the RH problem where we
forget about the non-constant jumps

RH-M1 M : C\ [a1,a2] — C?*2 is analytic.

RH-M2 M+ = M_ (_01 é) on (31,32).

RH-M3 M(z) =1+ O (z7!) as z — oc.

1/4
The solution is explicit (with 8(z) = (z—az> )

3(8(2)+8712) 3 (B(z) - 87H2))
~L(B(z) - B 2)) L(B(2)+B7Y(2))

Global parametrix is more complicated in multi-interval case.



Local parametrix

Local parametrix P approximates S near endpoints aj, as.

Jump matrices for P near a, agree with those of S

Matching condition:

P(z)=(I+0 (n_l)) M(z)

as n — oo, uniformly
for |z—ax| =0

P is constructed with Airy functions in case the density iy
of the equilibrium measure vanishes as a square root at a,.



Third transformation S — R

M(z)7L, f i isk
Define  R(z) = S(z)M(z) 1, or z outside disks,
5(2)P(z)~7,
RH problem for R
RH-R1 R:C\ g — C?*? is analytic.
RH-R2 R_|_ = R_JR on ZR.
RH-R3 R(z) =1+ O(z1!) as z — oo.

for z inside disks

Jumps for R are all | + O(n™ 1) as n — oo

1 0 _
2 M <e2ns02 1> M
1 e <"1

e

\>_/ pPM—1



3. Non-hermitian orthogonality
and S-contours



Non hermitian orthogonality on a contour

In several contexts one is interested in polynomials P,
satisfying

/ P,,(z)zke*"v(z)dz =0, k=0,1,...,n—1,
.

o [ is a contour in the complex plane

e V(z) is holomorphic in domain § containing I

Good news
@ RH problem and its solution remain valid.

e Equilibrium measure with external field V on [ exists.



Non hermitian orthogonality on a contour

In several contexts one is interested in polynomials P,
satisfying

/ P,,(z)zke*"v(z)dz =0, k=0,1,...,n—1,
.

o [ is a contour in the complex plane

e V(z) is holomorphic in domain § containing I

Good news
@ RH problem and its solution remain valid.

e Equilibrium measure with external field V on [ exists.

Complication

e [ is not unique: We can move I within Q by Cauchy’s
theorem. Each I has its own equilibrium measure.

o Is there a “good” contour ' ?



S property

During the RH analysis one uses the g-function

g(z) = / log(z — $)dp(s)

where 1y now also depends on T.
o Important property

Re (g+(z) +g-(z) — V(2)) =¢ on support of uy

To make the steepest descent analysis work one also needs
that the imaginary part is constant on each component of
the support. This is (equivalent to) the S-property

is piecewise constant

Im (g4(z) +g-(z) — V(2)) on support of uy

@ The support of the equilibrium measure should be an
S-contour in external field V.



Example: Ginibre ensemble with insertion

Planar orthogonal polynomials (POP) appear in the analysis
of normal matrix model and other random matrix models
with eigenvalues in the complex plane.

@ POP are sometimes non-hermitian orthogonal on a
contour.

o Example: Ginibre ensemble with insertion at a > 0

/ Py(2)z¥|z — a*™e P dA(z) =0, k=0,1,...,n—1
C



Example: Ginibre ensemble with insertion

Planar orthogonal polynomials (POP) appear in the analysis
of normal matrix model and other random matrix models
with eigenvalues in the complex plane.
@ POP are sometimes non-hermitian orthogonal on a
contour.

o Example: Ginibre ensemble with insertion at a > 0

/ Py(2)z¥|z — a*™e P dA(z) =0, k=0,1,...,n—1
C

Same polynomial P, also satisfies

1 k(z=a)" .o,
57 rPn(z)z € Mgz =0, k=0,1,...,n—1,

where [ is a closed contour around the interval [0, a].
Balogh, Bertola, Lee, McLaughlin (2015)



Phase transition

Model has a phase transition:
e For large ¢ > 0, the S-contour is an open arc.

@ For small ¢, the S-contour is a closed contour.

//'

ya \\\

Analysis of critical case: Kriiger, Lee, Yang (2025)



4. Multiple orthogonal polynomials



Multiple orthogonality of type Il

Given
e contour [ with weights wy, ..., w,
e multi-index 7= (ny,...,n;) € N

Type Il MOP Pj of degree |n] =} n; satisfies

/Pﬁ(Z)ZkVVj(Z)dZ:O, k=0,....,nj—1, j=1,...,r.
-



Riemann-Hilbert problem for MOP

RH problem has size (r +1) x (r +1)

RH-Y1 Y : C\ T — Cl+)x(r+1) js analytic
RH-Y2 Y has boundary values on I that satisfy

1 Wl “ e Wr

o 1 --- 0
Yoe=Y_|. . . . on [,

0o 0 --- 1

ZA o0 .. 0
RH-Y3 Y(z) = (I + O(z7})) ( e 0 ) as z — oo.

(.) 0 z:”’



Riemann-Hilbert problem for MOP

RH problem has size (r +1) x (r +1)

RH-Y1 Y : C\ T — Cl+)x(r+1) js analytic
RH-Y2 Y has boundary values on I that satisfy

1 w Wy
01 --- 0
Yo=Y_|. . . ] onl,

0 0 1
zIfl o 0

1 0 z7m . 0

RH-Y3 Y(z)=(I+O0(Y)) | . . . . as z — 0o.

(.) 0. z:”’

RH problem has a solution if and only if the type || MOP
uniquely exists and in that case

([ Pi2)=Yu(z) |

Van Assche, Geronimo, K (2001)




MOP in RMT

MOP appear in a number of random matrix models where
eigenvalues are a determinantal point process

Random matrices with external source
Couples random matrices (two matrix model)

Muttalib-Borodin ensemble

Ginibre ensemble with more than one insertion
Lee-Yang (2019)



Vector equilibrium problem

Asymptotic analysis of RH problem requires in many cases a
vector of equilibrium measures

A= (11, por)

minimizing some energy functional

r

Z qk//log duj( )duk(W)+Z/deuj

Jj=1



5. Matrix valued orthogonal polynomials



Matrix valued orthogonality

Given
o Weight W is matrix valued of size r x ron I’

Pn(z) = zpl, + ... is matrix valued polynomial of degree n if
/Pn(z)sz(z)dz =0, k=0,1,....n—1
r

integration is done entrywise



Matrix valued orthogonality

Pn(z) = zpl, + ... is matrix valued polynomial of degree n if

/Pn(z)sz(z)dz =0, k=0,1,...,n—-1
.

RH problem has size 2r x 2r

RH-Y1 Y :C\T — C?*?" is analytic
RH-Y2 Y has boundary values on [ that satisfy

W
Yy =Y_ <0r /r> onl,

z"l, 0,
0 z7"I,

RH-Y3 Y(z) = (I + O(z™1)) (



Matrix valued orthogonality

Pn(z) = zpl, + ... is matrix valued polynomial of degree n if

/Pn(z)sz(z)dz =0, k=0,1,...,n—-1
.

RH problem has size 2r x 2r

RH-Y1 Y :C\T — C?*?" is analytic
RH-Y2 Y has boundary values on [ that satisfy

W
Yy =Y_ <0r /r> onl,

RH-Y3 Y(z) = (I + O(z™Y)) (Zolf 29;1

RH problem has a solution if and only if MVOP uniquely
exists and in that case

)asz—>oo.




Random tilings

MVOP can be used in asymptotic analysis of random tilings
with doubly periodic weightings Duits, K (2021)

One needs equilibrium measure in external field on a
compact Riemann surface to normalize the RH problem
@ Steepest descent analysis of RH period is done for a
special class of 3 x 3 periodic weightings K (2025)
o Implications for random tilings
van Horssen-K (coming soon)



Thank you for your attention

Happy Birthday,
Peter !!




