
Riemann Hilbert problems

Arno Kuijlaars

Department of Mathematics
Katholieke Universiteit Leuven, Belgium

MATRIX Institute, Creswick, Australia

4 August 2025



Outline of the talk

1. Riemann Hilbert problems

2. Steepest descent analysis

3. Non-hermitian orthogonality and S-curves

4. Multiple orthogonal polynomials

5. Matrix valued orthogonal polynoials



1. Riemann Hilbert problems



Riemann Hilbert problem

Jump problem for a piecewise analytic function

γ

+−

Scalar RH problem (additive jump):

RH-f1 f : C \ Γ → C is analytic

RH-f2 f has boundary values on both sides of Γ, and

f+ = f− + v on Γ

RH-f3 f (z) = O(z−1) as z → ∞.

Unique solution is

f (z) =
1

2πi

∫
Γ

v(s)

s − z
ds.



Matrix Riemann-Hilbert problem for OPs

Given weight w on R and n ∈ N, find 2× 2 matrix valued
function Y (z) such that

RH-Y1 Y : C \ R → C2×2 is analytic.

RH-Y2 Y has boundary values on R, and and

Y+ = Y−

(
1 w
0 1

)
, on R.

RH-Y3 Y (z) =
(
I +O(z−1)

)(zn 0
0 z−n

)
as z → ∞.

Unique solution is given in terms of orthogonal polynomials∫ ∞

−∞
Pn(x)x

kw(x)dx = 0 k = 0, 1, . . . , n − 1,



Fokas, Its, Kitaev RH problem for OP

RH problem has the unique solution

Y (z) =

 Pn(z)
1

2πi

∫ ∞

−∞

Pn(s)w(s)

s − z
ds

−2πiγ−2
n−1Pn−1(z) −γ−2

n−1

∫ ∞

−∞

Pn−1(s)w(s)

s − z
ds


where γn−1 is the leading coefficient of the orthonormal
polynomial of degree n − 1.

Fokas-Its-Kitaev (1992)



2. Steepest descent analysis



Deift-Zhou steepest descent analysis

Deift-Zhou (1993) steepest descent analysis for RH problem
for A on contour ΣA, depending on parameter, say n, and we
are interested in n → ∞.

Sequence of explicit transformations A 7→ B 7→ · · · 7→ R
leading to a RH problem for R on contour ΣR

RH-R1 R : C \ ΣR → C2×2 is analytic.

RH-R2 R has boundary values on ΣR satisfying

R+ = R−JR , on ΣR ,

where JR depends on n with
�� ��JR → I as n → ∞,

both in L2(ΣR) and L∞(ΣR).

RH-R3 R(z) = I +O(z−1) as z → ∞.

As a result �� ��R(z) → I as n → ∞

uniformly for z in compact subsets of C \ ΣR .



RH problem with varying exponential weight

We apply Deift/Zhou steepest descent analysis to following
Deift-Kriecherbauer-McLaughlin-Venakides-Zhou (1999)

RH-Y1 Y : C \ R → C2×2 is analytic,

RH-Y2 Y+(x) = Y−(x)

(
1 e−nV (x)

0 1

)
on R,

RH-Y3 Y (z) =
(
I +O

(
z−1

))(zn 0
0 z−n

)
as z → ∞.

Sequence of transformations�� ��Y 7→ T 7→ S 7→ R

Y 7→ T : normalization by means of the equilibrium measure

T 7→ S : opening of lenses, turning oscillations into
exponentially decaying entries

S 7→ R : construction of global and local parametrices



Equilibrium measure in external field

µV is the probability measure that minimizes the logarithmic
energy in the external field∫∫

log
1

|x − y |
dµ(x)dµ(y) +

∫
V (x)dµ(x)

For real analytic V , there is a density ψV which is
supported on a finite union of intervals, and that is real
analytic on the interior of each interval.

Deift-Kriecherbauer-McLaughlin (1999)

In many situations it is important that the Cauchy transform
of µV satisfies quadratic equation[∫
dµV (s)

s − z
+

V ′(z)

2

]2
=

(
V ′(z)

2

)2

−
∫

V ′(z)− V ′(s)

z − s
dµV (s)︸ ︷︷ ︸

=QV (z)

and QV is a polynomial in case V is a polynomial.
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First transformation Y 7→ X

We use g-function

g(z) =

∫
log(z − s)dµV (s)

Define for suitable constant ℓ,

T (z) =

(
enℓ/2 0

0 e−nℓ/2

)
Y (z)

(
e−ng(z)−nℓ/2 0

0 eng(z)+nℓ/2

)

T satisfies a new RH problem. Jumps take different shape
on the support of µV and outside the support.

Suppose supp(µV ) =
N⋃
j=1

[a2j−1, a2j ].

Each end-point has φ-function

φj(z) =

∫ z

aj

QV (s)
1/2ds
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RH problem for T

T satisfies

RH-T1 T : C \ R → C2 is analytic,

RH-T2 T has boundary values on R satisfying

RH-T2a T+ = T−

(
e2nφ2N,+ 1

0 e2nφ2N,−

)
on suppµV ,

RH-T2b T+ = T−

(
1 e−2nφ1O
0 1

)
on (−∞, a1).

RH-T2c T+ = T−

(
e−2πinωj e−2nφ2j

0 e2πinωj

) on(a2j , a2j+1)
for j = 1, . . . ,N − 1,
with ωj = µV ([a2j+1,∞)),

RH-T2d T+ = T−

(
1 e−2nφ2N

0 1

)
on (a2N ,∞),

RH-T3
�� ��T (z) = I +O(z−1) as z → ∞. (normalization)



One interval case

a1
s

a2
s

(
1 e−2nφ2

0 1

)(
e2nφ2,+ 1

0 e2nφ2,−

)(
1 e−2nφ1

0 1

)

φ1(x) > 0 for x < a1,

φ2(x) > 0 for x > a2,

φ2,+ = −φ2,− is purely imaginary on (a1, a2)



Second transformation T 7→ S

Open a lens around [a1, a2] and define

S = T

(
1 0

−e2nφ2 1

)
in upper part of the lens

S = T

(
1 0

e2nφ2 1

)
in lower part of the lens

S = T outside the lens

Jumps in the RH problem for S

a1
s

a2
s

(
1 e−2nφ2

0 1

)

(
0 1
−1 0

)

(
1 0

e2nφ2 1

)

(
1 0

e2nφ2 1

)

(
1 e−2nφ1

0 1

)

H
HHH

HY



Global parametrix

Parametrices are approximations to S .

Away from endpoints S is well-approximated by the global
parametrix M: it is the solution to the RH problem where we
forget about the non-constant jumps

RH-M1 M : C \ [a1, a2] → C2×2 is analytic.

RH-M2 M+ = M−

(
0 1
−1 0

)
on (a1, a2).

RH-M3 M(z) = I +O
(
z−1

)
as z → ∞.

The solution is explicit (with β(z) =
(
z−a2
z−a1

)1/4
)

M(z) =

 1
2

(
β(z) + β−1(z)

)
1
2i

(
β(z)− β−1(z)

)
− 1

2i

(
β(z)− β−1(z)

)
1
2

(
β(z) + β−1(z)

)


Global parametrix is more complicated in multi-interval case.
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Local parametrix

Local parametrix P approximates S near endpoints a1, a2.

Jump matrices for P near a2 agree with those of S

a2
r rr

a2 + δa2 − δ

(
1 e−2nφ2

0 1

)(
0 1
−1 0

)
(

1 0
e2nφ2 1

)

(
1 0

e2nφ2 1

)
HHH

HHj Matching condition:

P(z) =
(
I + O

(
n−1

))
M(z)

as n → ∞, uniformly
for |z − a2| = δ

P is constructed with Airy functions in case the density ψV

of the equilibrium measure vanishes as a square root at a2.



Third transformation S 7→ R

Define R(z) =

{
S(z)M(z)−1, for z outside disks,

S(z)P(z)−1, for z inside disks

RH problem for R

RH-R1 R : C \ ΣR → C2×2 is analytic.
RH-R2 R+ = R−JR on ΣR .
RH-R3 R(z) = I +O(z−1) as z → ∞.

Jumps for R are all I +O(n−1) as n → ∞

a1
q��

��
a2
q��

��M

(
1 e−2nφ2

0 1

)
M−1

M

(
1 0

e2nφ2 1

)
M−1

M

(
1 0

e2nφ2 1

)
M−1

M

(
1 e−2nφ1

0 1

)
M−1

PM−1PM−1



3. Non-hermitian orthogonality
and S-contours



Non hermitian orthogonality on a contour

In several contexts one is interested in polynomials Pn

satisfying∫
Γ
Pn(z)z

ke−nV (z)dz = 0, k = 0, 1, . . . , n − 1,

Γ is a contour in the complex plane

V (z) is holomorphic in domain Ω containing Γ

Good news

RH problem and its solution remain valid.

Equilibrium measure with external field V on Γ exists.

Complication

Γ is not unique: We can move Γ within Ω by Cauchy’s
theorem. Each Γ has its own equilibrium measure.

Is there a “good” contour Γ ?
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S property

During the RH analysis one uses the g-function

g(z) =

∫
log(z − s)dµV (s)

where µV now also depends on Γ.

Important property

Re (g+(z) + g−(z)− V (z)) = ℓ on support of µV

To make the steepest descent analysis work one also needs
that the imaginary part is constant on each component of
the support. This is (equivalent to) the S-property

Im (g+(z) + g−(z)− V (z))
is piecewise constant
on support of µV

The support of the equilibrium measure should be an
S-contour in external field V .



Example: Ginibre ensemble with insertion

Planar orthogonal polynomials (POP) appear in the analysis
of normal matrix model and other random matrix models
with eigenvalues in the complex plane.

POP are sometimes non-hermitian orthogonal on a
contour.

Example: Ginibre ensemble with insertion at a > 0∫
C
Pn(z)z

k |z − a|2nce−n|z|2dA(z) = 0, k = 0, 1, . . . , n − 1

Same polynomial Pn also satisfies

1

2πi

∮
Γ
Pn(z)z

k (z − a)cn

zcn+n
e−anzdz = 0, k = 0, 1, . . . , n − 1,

where Γ is a closed contour around the interval [0, a].
Balogh, Bertola, Lee, McLaughlin (2015)
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Phase transition

Model has a phase transition:

For large c > 0, the S-contour is an open arc.

For small c, the S-contour is a closed contour.

Analysis of critical case: Krüger, Lee, Yang (2025)



4. Multiple orthogonal polynomials



Multiple orthogonality of type II

Given

contour Γ with weights w1, . . . ,wr

multi-index n⃗ = (n1, . . . , nr ) ∈ Nr

Type II MOP Pn⃗ of degree |n⃗| =
∑

j nj satisfies∫
Γ
Pn⃗(z)z

kwj(z)dz = 0, k = 0, . . . , nj − 1, j = 1, . . . , r .



Riemann-Hilbert problem for MOP

RH problem has size (r + 1)× (r + 1)

RH-Y1 Y : C \ Γ → C(r+1)×(r+1) is analytic

RH-Y2 Y has boundary values on Γ that satisfy

Y+ = Y−


1 w1 · · · wr

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 on Γ,

RH-Y3 Y (z) =
(
I +O(z−1)

) z |n⃗| 0 ··· 0
0 z−n1 ··· 0
...

...
...

...
0 ··· 0 z−nr

 as z → ∞.

RH problem has a solution if and only if the type II MOP
uniquely exists and in that case�� ��Pn⃗(z) = Y11(z)

Van Assche, Geronimo, K (2001)
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MOP in RMT

MOP appear in a number of random matrix models where
eigenvalues are a determinantal point process

Random matrices with external source

Couples random matrices (two matrix model)

Muttalib-Borodin ensemble

Ginibre ensemble with more than one insertion
Lee-Yang (2019)



Vector equilibrium problem

Asymptotic analysis of RH problem requires in many cases a
vector of equilibrium measures

µ⃗ = (µ1, . . . , µr )

minimizing some energy functional

r∑
j ,k=1

cj ,k

∫∫
log

1

|z − w |
dµj(z)dµk(w) +

r∑
j=1

∫
Vjdµj



5. Matrix valued orthogonal polynomials



Matrix valued orthogonality

Given

Weight W is matrix valued of size r × r on Γ

Pn(z) = znIr + . . . is matrix valued polynomial of degree n if∫
Γ
Pn(z)z

kW (z)dz = 0r , k = 0, 1, . . . , n − 1

integration is done entrywise

RH problem has size 2r × 2r

RH-Y1 Y : C \ Γ → C2r×2r is analytic
RH-Y2 Y has boundary values on Γ that satisfy

Y+ = Y−

(
Ir W
0r Ir

)
on Γ,

RH-Y3 Y (z) =
(
I +O(z−1)

)(znIr 0r
0r z−nIr

)
as z → ∞.

RH problem has a solution if and only if MVOP uniquely
exists and in that case�

�
�

Pn(z) =

(
Ir 0r

)
Y (z)

(
Ir
0r

)
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Random tilings

MVOP can be used in asymptotic analysis of random tilings
with doubly periodic weightings Duits, K (2021)

One needs equilibrium measure in external field on a
compact Riemann surface to normalize the RH problem

Steepest descent analysis of RH period is done for a
special class of 3× 3 periodic weightings K (2025)

Implications for random tilings
van Horssen-K (coming soon)



Thank you for your attention

Happy Birthday,
Peter !!


