Phase Diagram of Extensive-Rank Matrix Denoising beyond Rotational Invariance

Justin Ko — University of Waterloo \rightarrow Syracuse University LiCA 2025 – Matrix Institute

Based on three joint papers with:

- PRX 2025: Jean Barbier (ICTP), Francesco Camilli (ICTP), Koki Okajima (University of Tokyo)
- 2. IZS 2024: Jean Barbier (ICTP), Anas Rahman (Hong Kong University)
- 3. PTRF 2025: Jonathan Husson (Université Clermont-Auvergne)

August 10, 2025

Spiked Wigner Matrix: Johnstone '00

Infer matrix $m{X} \in \mathbb{R}^{N \times M}$ from the noisy matrix $m{Y} \in \mathbb{R}^{N \times N}$

Structure: $X \in \mathbb{R}^{N \times M}$ matrix with i.i.d. entries from a known (centered) prior \mathbb{P}_X .

Spiked Wigner Matrix: Johnstone '00

Infer matrix $m{X} \in \mathbb{R}^{N \times M}$ from the noisy matrix $m{Y} \in \mathbb{R}^{N \times N}$

Structure: $X \in \mathbb{R}^{N \times M}$ matrix with i.i.d. entries from a known (centered) prior \mathbb{P}_X .

$$\frac{\sqrt{\lambda}}{\sqrt{N}} \boldsymbol{X} \boldsymbol{X}^\mathsf{T} + \boldsymbol{Z} = \boldsymbol{Y}$$

Spiked Wigner Matrix: Johnstone '00

Infer matrix $m{X} \in \mathbb{R}^{N \times M}$ from the noisy matrix $m{Y} \in \mathbb{R}^{N \times N}$

Structure: $X \in \mathbb{R}^{N \times M}$ matrix with i.i.d. entries from a known (centered) prior \mathbb{P}_X .

Main Question: Phase Diagram

Main Question: Phase Diagram

Bayesian Inference

Goals: Compute the matrix mean squared error of the matrix XX^{T}

$$\begin{aligned} \text{MMSE}_{N}(\lambda) &= \frac{1}{NM^{2}} \sum_{i,j=1}^{N} \min_{\theta} \mathbb{E}[(X_{i} \cdot X_{j} - \theta_{i,j}(\boldsymbol{Y}))^{2}] \\ &= \frac{1}{NM^{2}} \mathbb{E} \|\boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} - \langle \boldsymbol{x} \boldsymbol{x}^{\mathsf{T}} \rangle \|_{2}^{2} \end{aligned}$$

where $\langle \cdot \rangle$ denotes the average with respect to the posterior.

Bayesian Inference

Goals: Compute the matrix mean squared error of the matrix XX^T

$$\begin{aligned} \text{MMSE}_{N}(\lambda) &= \frac{1}{NM^{2}} \sum_{i,j=1}^{N} \min_{\theta} \mathbb{E}[(X_{i} \cdot X_{j} - \theta_{i,j}(\mathbf{Y}))^{2}] \\ &= \frac{1}{NM^{2}} \mathbb{E} \|\mathbf{X}\mathbf{X}^{\mathsf{T}} - \langle \mathbf{x}\mathbf{x}^{\mathsf{T}} \rangle \|_{2}^{2} \end{aligned}$$

where $\langle \cdot \rangle$ denotes the average with respect to the posterior.

Posterior:

$$d \mathbb{P}(x \mid Y) = \frac{\exp(-\frac{1}{4} \| Y - \frac{\sqrt{\lambda}}{N} x x^{\mathsf{T}} \|_2^2)}{C(Y)} d \mathbb{P}_X^{\otimes N \times M}(x).$$

Statistical Goals

Connection: IMMSE — Relation

$$\frac{d}{d\lambda}\frac{1}{NM}I(\boldsymbol{X};\boldsymbol{Y}) = \frac{1}{4}\text{MMSE}_{N}(\lambda)$$

Mutual Information: Compute the mutual information

$$I(\mathbf{X}; \mathbf{Y}) := \frac{\lambda \|\mathbb{E}[\mathbf{X}^{\mathsf{T}} \mathbf{X}]\|_{2}^{2}}{4} - \frac{1}{NM} \mathbb{E}_{Z, X} \ln Z_{N, M}$$
 (1)

where

$$\frac{1}{NM}\mathbb{E}_{Z,X}\ln Z_{N,M}$$

is the free entropy.

Statistical Physics

Goals: Compute the free entropy

$$F_{N,M}(\lambda) := \frac{1}{NM} \mathbb{E}_{Z,X} \ln Z_{N,M}$$

where

$$Z_{N,M} := \int_{\mathbb{R}^{N \times M}} \exp(H_N(x)) d\mathbb{P}_X^{\otimes NM}(x)$$

denotes the partition function associated with the Hamiltonian

$$H_{N}(x) := -\frac{1}{2} \left\| \mathbf{Y} - \sqrt{\frac{\lambda}{N}} x x^{\mathsf{T}} \right\|_{2}^{2} + \text{cons}$$

$$= \frac{1}{2} \operatorname{tr} \left(\sqrt{\frac{\lambda}{N}} \mathbf{Z} x x^{\mathsf{T}} + \frac{\lambda}{N} \mathbf{X} \mathbf{X}^{\mathsf{T}} x x^{\mathsf{T}} - \frac{\lambda}{2N} x x^{\mathsf{T}} x x^{\mathsf{T}} \right).$$

We want to study the *free entropy* for different ranks with both rotationally invariant and non-rotationally invariant priors:

• Rank 1 / Finite Rank Case: $M = k < \infty$.

We want to study the *free entropy* for different ranks with both rotationally invariant and non-rotationally invariant priors:

- Rank 1 / Finite Rank Case: $M = k < \infty$.
- Sublinear Rank: M(N) = o(N), $M(N) \to \infty$.

We want to study the *free entropy* for different ranks with both rotationally invariant and non-rotationally invariant priors:

- Rank 1 / Finite Rank Case: $M = k < \infty$.
- Sublinear Rank: M(N) = o(N), $M(N) \to \infty$.
- Extensive Rank: $M(N) = \alpha N$, $\alpha > 0$.

We want to study the *free entropy* for different ranks with both rotationally invariant and non-rotationally invariant priors:

- Rank 1 / Finite Rank Case: $M = k < \infty$.
- Sublinear Rank: M(N) = o(N), $M(N) \to \infty$.
- Extensive Rank: $M(N) = \alpha N$, $\alpha > 0$.

The problem gets harder to analyze as we transition from rank 1 to extensive rank problems

We want to study the *free entropy* for different ranks with both rotationally invariant and non-rotationally invariant priors:

- Rank 1 / Finite Rank Case: $M = k < \infty$.
- Sublinear Rank: M(N) = o(N), $M(N) \to \infty$.
- Extensive Rank: $M(N) = \alpha N$, $\alpha > 0$.

The problem gets harder to analyze as we transition from rank 1 to extensive rank problems

Extensive Rank Setting: Understand extensive-width shallow neural networks (Barbier et al.), Matrix least squares (Ma–Fan)

Table of Contents

Finite Rank Case

Sublinear Rank Case

Extensive Rank Case

Comments on the Proof

Rank 1: Phase Diagram

Consider the scenario where M=1.

Theorem 1 (Barbier et al, Lelarge - Miolane, El Alaoui-Krzakala)

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}_{Z,X}\ln Z_{N,1}(\lambda)=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional:

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2}\right) d \, \mathbb{P}_X(x) \right].$$

Consider the scenario where M = 1.

Theorem 1 (Barbier et al, Lelarge - Miolane, El Alaoui-Krzakala)

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}_{Z,X}\ln Z_{N,1}(\lambda)=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional:

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \bigg[\int \exp \left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2} \right) d \, \mathbb{P}_X(x) \bigg].$$

Overlap Concentration (Barbier): Nishimori identity

$$\mathbb{E}\left\langle \left(\frac{\boldsymbol{x}\cdot\boldsymbol{X}}{N}-q\right)^{2}\right\rangle \rightarrow0$$

where $\langle \cdot \rangle$ is the average with respect to the posterior.

Consider the scenario where M = 1.

Theorem 1 (Barbier et al, Lelarge - Miolane, El Alaoui–Krzakala)

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}_{Z,X}\ln Z_{N,1}(\lambda)=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional:

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \bigg[\int \exp \left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2} \right) d \, \mathbb{P}_X(x) \bigg].$$

Overlap Concentration (Barbier): Nishimori identity

$$\mathbb{E}\left\langle \left(\frac{\mathbf{x}\cdot\mathbf{X}}{N}-q\right)^2\right\rangle \to 0$$

where $\langle \cdot \rangle$ is the average with respect to the posterior.

Order Parameter: The maximizing q satisfies

$$q = \lim_{N \to \infty} N^{-1} \mathbb{E} \langle \boldsymbol{x} \cdot \boldsymbol{X} \rangle \in \mathbb{R}$$

Consider the scenario where M = 1.

Theorem 1 (Barbier et al, Lelarge - Miolane, El Alaoui-Krzakala)

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}_{Z,X}\ln Z_{N,1}(\lambda)=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional:

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \bigg[\int \exp \left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2} \right) d \, \mathbb{P}_X(x) \bigg].$$

Overlap Concentration (Barbier): Nishimori identity

$$\mathbb{E}\left\langle \left(\frac{\mathbf{x}\cdot\mathbf{X}}{N}-q\right)^{2}\right\rangle \rightarrow0$$

where $\langle \cdot \rangle$ is the average with respect to the posterior.

Order Parameter: The maximizing q satisfies

$$q = \lim_{N \to \infty} N^{-1} \mathbb{E} \langle \boldsymbol{x} \cdot \boldsymbol{X} \rangle \in \mathbb{R}$$

Phase Diagram: Analyzing the maximizer (Lesieur et al.)

Consider the scenario where $M = k < \infty$.

Theorem 2 (Lelarge - Miolane, Barbier - K - Rahman)

$$\lim_{N\to\infty}\frac{1}{Nk}\mathbb{E}_{Z,X}\ln Z_{N,k}(\lambda)=\sup_{\mathbf{Q}}\frac{1}{k}\varphi_k(\mathbf{Q})=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional: Let $\mathbf{Q} \in \mathbb{R}^{k \times k}$

$$\varphi_k(\mathbf{Q}) = -\frac{\lambda \operatorname{tr}(\mathbf{Q}^2)}{4} + \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda \mathbf{Q}} \mathbf{z} \cdot \mathbf{x} + \lambda \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{X} - \frac{\lambda \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}}{2} \right) d \, \mathbb{P}_X^{\otimes k}(\mathbf{x}) \right].$$

Consider the scenario where $M = k < \infty$.

Theorem 2 (Lelarge - Miolane, Barbier - K - Rahman)

$$\lim_{N\to\infty}\frac{1}{Nk}\mathbb{E}_{Z,X}\ln Z_{N,k}(\lambda)=\sup_{\mathbf{Q}}\frac{1}{k}\varphi_k(\mathbf{Q})=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional: Let $\mathbf{Q} \in \mathbb{R}^{k \times k}$

$$\varphi_k(\mathbf{Q}) = -\frac{\lambda \operatorname{tr}(\mathbf{Q}^2)}{4} + \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda \mathbf{Q}} \mathbf{z} \cdot \mathbf{x} + \lambda \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{X} - \frac{\lambda \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x}}{2} \right) d \, \mathbb{P}_X^{\otimes k}(\mathbf{x}) \right].$$

Order Parameter: The maximizing Q satisfies

$$\mathbf{Q} = N^{-1} \lim_{N \to \infty} \mathbb{E} \langle \mathbf{X}^{\mathsf{T}} \mathbf{x} \rangle \in \mathbb{R}^{k \times k}$$

Table of Contents

Finite Rank Case

Sublinear Rank Case

Extensive Rank Case

Comments on the Proof

Known Results: Sublinear Rank Case

Intermediate Problem: Consider the scenario where M = o(N).

1. Configurations $\mathbf{x} \in \mathbb{R}^{N \times M}$ now grow simultaneously in both coordinates.

Known Results: Sublinear Rank Case

Intermediate Problem: Consider the scenario where M = o(N).

- 1. Configurations $\mathbf{x} \in \mathbb{R}^{N \times M}$ now grow simultaneously in both coordinates.
- 2. Concentration stills holds if M grows slowly.

Known Results: Sublinear Rank Case

Intermediate Problem: Consider the scenario where M = o(N).

- 1. Configurations $x \in \mathbb{R}^{N \times M}$ now grow simultaneously in both coordinates.
- 2. Concentration stills holds if M grows slowly.
- 3. The order parameters will be independent of N due to symmetries.

Main Result

Consider the scenario where $M = \log(N)$.

Theorem 3 (Limiting Free Energy (Barbier - K - Rahman))

If **X** has i.i.d. from a bounded centered distribution and φ is sufficiently regular in λ , then

$$\lim_{N\to\infty}F_{NM}(\lambda)=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional:

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \left[\int \exp \left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2} \right) d \, \mathbb{P}_X(x) \right].$$

Main Result

Consider the scenario where $M = \log(N)$.

Theorem 3 (Limiting Free Energy (Barbier - K - Rahman))

If **X** has i.i.d. from a bounded centered distribution and φ is sufficiently regular in λ , then

$$\lim_{N\to\infty}F_{NM}(\lambda)=\sup_{q}\varphi_1(q).$$

Replica Symmetric Functional:

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \bigg[\int \exp \left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2} \right) d \, \mathbb{P}_X(x) \bigg].$$

Spherical priors / Rotational Invariant Priors: Husson-Ko for M = o(N)

Table of Contents

Finite Rank Case

Sublinear Rank Case

Extensive Rank Case

Comments on the Proof

Extensive Rank Case

Consider the scenario where $M = \alpha N$.

1. Configurations $\mathbf{x} \in \mathbb{R}^{N \times M}$ now grow simultaneously in both coordinates.

Extensive Rank Case

Consider the scenario where $M = \alpha N$.

- 1. Configurations $x \in \mathbb{R}^{N \times M}$ now grow simultaneously in both coordinates.
- 2. Concentration fails because M grows too fast.

Extensive Rank Case

Consider the scenario where $M = \alpha N$.

- 1. Configurations $\mathbf{x} \in \mathbb{R}^{N \times M}$ now grow simultaneously in both coordinates.
- 2. Concentration fails because M grows too fast.
- 3. There is no good notion of the order parameters $Q \in \mathbb{R}^{M \times M}$ in the limit.

Known Results: Rotational Invariant Prior

Gaussian Prior (Unstructured): $X_{ij} \sim N(0,1)$

Known Results: Rotational Invariant Prior

Gaussian Prior (Unstructured): $X_{ij} \sim N(0,1)$

MMSE: Using HCIZ integrals (Matytsin, Guionnet-Zeitouni),

$$\lim_{N\to\infty} \mathrm{MMSE}_{N}(\lambda) = \frac{1}{\lambda\alpha} \left(1 - \frac{4\pi^{2}}{3} \int \rho_{Y}(y)^{3} \, dy \right)$$

where ρ_Y is the limiting spectral distribution of ${f Y}$.

Known Results: Rotational Invariant Prior

Gaussian Prior (Unstructured): $X_{ij} \sim N(0,1)$

MMSE: Using HCIZ integrals (Matytsin, Guionnet-Zeitouni),

$$\lim_{N\to\infty} \mathrm{MMSE}_{N}(\lambda) = \frac{1}{\lambda\alpha} \left(1 - \frac{4\pi^{2}}{3} \int \rho_{Y}(y)^{3} \, dy \right)$$

where ρ_{Y} is the limiting spectral distribution of Y.

Mutual Information: Using HCIZ integrals,

$$\lim_{N\to\infty}\frac{1}{MN}I(XX;Y)=\frac{1}{8\alpha}+\frac{1}{2\alpha}\int\rho_Y(x)\rho_Y(y)\ln|x-y|\,dxdy.$$

Known Results: Rotational Invariant Prior

Gaussian Prior (Unstructured): $X_{ij} \sim N(0,1)$

MMSE: Using HCIZ integrals (Matytsin, Guionnet-Zeitouni),

$$\lim_{N\to\infty} \mathrm{MMSE}_{N}(\lambda) = \frac{1}{\lambda\alpha} \left(1 - \frac{4\pi^{2}}{3} \int \rho_{Y}(y)^{3} \, dy \right)$$

where ρ_{Y} is the limiting spectral distribution of Y.

Mutual Information: Using HCIZ integrals,

$$\lim_{N\to\infty}\frac{1}{MN}I(XX;Y)=\frac{1}{8\alpha}+\frac{1}{2\alpha}\int\rho_Y(x)\rho_Y(y)\ln|x-y|\,dxdy.$$

Conjecture: This is correct for all priors (e.g. \mathbb{P}_X is Rademacher) (Semerjian).

Numerical Results: Non-Rotational Invariant Prior

Numerical Results: Non-Rotational Invariant Prior

Qualitative Phase Diagram

Qualitative Phase Diagram

Random Matrix Theory \longrightarrow Spin Glass Theory

Results: Prediction of the MI

Result 1 (Barbier - Camilli - K - Okajima)

If the prior is factorized there exists a $\lambda_c>0$ such that for all $\lambda>\lambda_c$,

$$\lim_{N\to\infty} I(X; Y) = \text{extr}_{-}\{\iota(r, q; \alpha, \lambda)\}$$

where

$$\iota(r, q; \alpha, \lambda) = \frac{rq}{2} + \frac{1}{4\alpha} \ln(1 + \lambda \alpha (1 - q^2))$$
$$- \mathbb{E} \ln\left[\int \exp\left(\sqrt{\lambda r} z x + \lambda r x X - \frac{\lambda r^2 x^2}{2}\right) d \mathbb{P}_X(x)\right]$$

Results: Prediction of the MI

Result 2 (Barbier - Camilli - K - Okajima)

If the prior is factorized there exists a $\lambda_c > 0$ such that for all $\lambda > \lambda_c$,

$$\lim_{N\to\infty} I(\boldsymbol{X}; \boldsymbol{Y}) = \operatorname{extr}_{-}\{\iota(r, q; \alpha, \lambda)\}\$$

where

$$\iota(r, q; \alpha, \lambda) = \frac{rq}{2} + \frac{1}{4\alpha} \ln(1 + \lambda \alpha (1 - q^2))$$
$$- \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda r} z x + \lambda r x X - \frac{\lambda r^2 x^2}{2}\right) d \mathbb{P}_X(x) \right]$$

Remark: Same result if you use the replica trick assuming a Gaussian ansatz in Sakata–Kabashima.

Results: Prediction of the Denoising-Factorization Transition

Rotationally Invariant Mutual Information:

$$\iota_D(\lambda) = \frac{1}{8\alpha} + \frac{1}{2\alpha} \int \rho_Y(x) \rho_Y(y) \ln|x - y| \, dx dy$$

Non-Rotationally Invariant Mutual Information:

$$\iota_F(\lambda) = \operatorname{extr}_{-}\{\iota(r, q; \alpha, \lambda)\}.$$

Results: Prediction of the Denoising-Factorization Transition

Rotationally Invariant Mutual Information:

$$\iota_D(\lambda) = \frac{1}{8\alpha} + \frac{1}{2\alpha} \int \rho_Y(x) \rho_Y(y) \ln|x - y| \, dx dy$$

Non-Rotationally Invariant Mutual Information:

$$\iota_{F}(\lambda) = \operatorname{extr}_{-}\{\iota(r, q; \alpha, \lambda)\}.$$

Result 3 (Barbier - Camilli - K - Okajima)

If the prior is factorized then for all $\lambda \geq 0$,

$$\lim_{N\to\infty} I(X;Y) = \min(\iota_D,\iota_F).$$

Results: Prediction of the Denoising-Factorization Transition

Rotationally Invariant Mutual Information:

$$\iota_D(\lambda) = \frac{1}{8\alpha} + \frac{1}{2\alpha} \int \rho_Y(x) \rho_Y(y) \ln|x - y| \, dx dy$$

Non-Rotationally Invariant Mutual Information:

$$\iota_F(\lambda) = \operatorname{extr}_{-}\{\iota(r, q; \alpha, \lambda)\}.$$

Result 4 (Barbier - Camilli - K - Okajima)

If the prior is factorized then for all $\lambda \geq 0$,

$$\lim_{N\to\infty}I(\boldsymbol{X};\boldsymbol{Y})=\min(\iota_D,\iota_F).$$

Critical λ :

$$\lambda_c = \sup\{\lambda \geq 0 \mid \iota_D \leq \iota_F\}.$$

Results: Comparison with Simulations

Results: Comparison with Simulations

Table of Contents

Finite Rank Case

Sublinear Rank Case

Extensive Rank Case

Comments on the Proof

Challenges: Extensive Rank Case

Goal: Compute the theoretical curve for the MI when λ is large.

Challenges: Extensive Rank Case

Goal: Compute the theoretical curve for the MI when λ is large.

Strategy: Adapt the techniques from spin glasses (Guerra, Aizenman–Sims–Starr, Talagrand, Panchenko, Lelarge–Miolane)

Lower Bound - **Guerra's Interpolation:** Gaussian interpolation with the replica symmetric functional.

Cavity Method: Reduce the problem from N dimensions to k dimensions.

Cavity Method: Reduce the problem from N dimensions to k dimensions.

Write

$$\limsup \frac{1}{Nk} \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \leq \limsup \frac{1}{k} \Big(\mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \Big)$$

Cavity Method: Reduce the problem from N dimensions to k dimensions.

Write

$$\limsup \frac{1}{Nk} \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \leq \limsup \frac{1}{k} \Big(\mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \Big)$$

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times k} \times \mathbb{R}^{k}$

$$H_{N+1}(x) = z_N(x, w) + H'_N(x), \qquad H_N(x) = y_N(x) + H'_N(x).$$

Cavity Method: Reduce the problem from N dimensions to k dimensions.

Write

$$\limsup \frac{1}{Nk} \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \leq \limsup \frac{1}{k} \Big(\mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \Big)$$

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times k} \times \mathbb{R}^{k}$

$$H_{N+1}(\mathbf{x}) = z_N(\mathbf{x}, \mathbf{w}) + H'_N(\mathbf{x}), \qquad H_N(\mathbf{x}) = y_N(\mathbf{x}) + H'_N(\mathbf{x}).$$

$$\begin{split} & \mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \\ & = \mathbb{E} \ln \int e^{z_N(\mathbf{x},w) + H_N'(\mathbf{x})} d\, \mathbb{P}_X^{\otimes k}(w) d\, \mathbb{P}_X^{\otimes Nk}(x) - \mathbb{E} \ln \int e^{y_N(\mathbf{x}) + H_N'(\mathbf{x})} \, d\, \mathbb{P}_X^{\otimes Nk}(x) \end{split}$$

Cavity Method: Reduce the problem from N dimensions to k dimensions.

Write

$$\limsup \frac{1}{Nk} \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \leq \limsup \frac{1}{k} \Big(\mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \Big)$$

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times k} \times \mathbb{R}^{k}$

$$H_{N+1}(x) = z_N(x, w) + H'_N(x), \qquad H_N(x) = y_N(x) + H'_N(x).$$

$$\begin{split} & \mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \\ & = \mathbb{E} \ln \int e^{z_N(\mathbf{x},w) + H_N'(\mathbf{x})} d \, \mathbb{P}_X^{\otimes k}(w) d \, \mathbb{P}_X^{\otimes Nk}(x) - \mathbb{E} \ln \int e^{y_N(\mathbf{x}) + H_N'(\mathbf{x})} \, d \, \mathbb{P}_X^{\otimes Nk}(x) \\ & = \mathbb{E} \ln \left\langle \int e^{z_N(\mathbf{x},w)} d \, \mathbb{P}_X^{\otimes k}(w) \right\rangle' - \mathbb{E} \ln \left\langle e^{y_N(\mathbf{x})} \right\rangle' \end{split}$$

Cavity Method: Reduce the problem from N dimensions to k dimensions.

Write

$$\limsup \frac{1}{Nk} \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \leq \limsup \frac{1}{k} \Big(\mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \Big)$$

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times k} \times \mathbb{R}^{k}$

$$H_{N+1}(\mathbf{x}) = z_N(\mathbf{x}, \mathbf{w}) + H'_N(\mathbf{x}), \qquad H_N(\mathbf{x}) = y_N(\mathbf{x}) + H'_N(\mathbf{x}).$$

Concentration of $X^{\mathsf{T}}x$ under $\langle \cdot \rangle'$

$$\begin{split} &\mathbb{E}_{Z,X} \ln Z_{N+1,k}(\lambda) - \mathbb{E}_{Z,X} \ln Z_{N,k}(\lambda) \\ &= \mathbb{E} \ln \int e^{z_N(\mathbf{x},w) + H_N'(\mathbf{x})} d\, \mathbb{P}_X^{\otimes k}(w) d\, \mathbb{P}_X^{\otimes Nk}(x) - \mathbb{E} \ln \int e^{y_N(\mathbf{x}) + H_N'(\mathbf{x})} \, d\, \mathbb{P}_X^{\otimes Nk}(x) \\ &\approx \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda \mathbf{Q}} \mathbf{z} \cdot \mathbf{w} + \lambda \mathbf{w}^\mathsf{T} \mathbf{Q} \mathbf{x} - \frac{\lambda \mathbf{w}^\mathsf{T} \mathbf{Q} \mathbf{w}}{2} \right) d\, \mathbb{P}_X^{\otimes k}(w) \right] - \frac{\lambda \operatorname{tr}(\mathbf{Q}^2)}{4} \end{split}$$

Consider the case where M = o(N).

Challenges:

ullet Deal with increments in N and M simultaneously

Consider the case where M = o(N).

Challenges:

- Deal with increments in N and M simultaneously
- Overlap concentration still holds if *M* grows sufficiently slowly

Technique 1: Multiscale Cavity Method

Theorem 4 (Barbier – K – Rahman)

For scaling parameters $\alpha > 0$, $\gamma \geq 0$, and $M_N = \lfloor \alpha N^{\gamma} \rfloor$, we have

$$\limsup_{N\to\infty} F_N(\lambda) \le \frac{1}{1+\gamma} \limsup_{N\to\infty} \frac{\Delta_{\text{row}}}{M} + \frac{\gamma}{1+\gamma} \limsup_{N\to\infty} \frac{\Delta_{\text{col}}}{N}$$
(2)

and

$$\liminf_{N \to \infty} F_N(\lambda) \ge \frac{1}{1+\gamma} \liminf_{N \to \infty} \frac{\Delta_{\text{row}}}{M} + \frac{\gamma}{1+\gamma} \liminf_{N \to \infty} \frac{\Delta_{\text{col}}}{N}, \tag{3}$$

where

$$\Delta_{\text{row}}(N) := \mathbb{E}_{Z,X} \ln Z_{N+1,M_{N+1}} - \mathbb{E}_{Z,X} \ln Z_{N,M_{N+1}}, \tag{4}$$

$$\Delta_{\operatorname{col}}(N) := \mathbb{E}_{Z,X} \ln Z_{N,M_N+1} - \mathbb{E}_{Z,X} \ln Z_{N,M_N}. \tag{5}$$

Technique 1: Multiscale Cavity Method

Theorem 4 (Barbier – K – Rahman)

For scaling parameters $\alpha > 0$, $\gamma \geq 0$, and $M_N = \lfloor \alpha N^{\gamma} \rfloor$, we have

$$\limsup_{N\to\infty} F_N(\lambda) \le \frac{1}{1+\gamma} \limsup_{N\to\infty} \frac{\Delta_{\text{row}}}{M} + \frac{\gamma}{1+\gamma} \limsup_{N\to\infty} \frac{\Delta_{\text{col}}}{N}$$
 (2)

and

$$\liminf_{N\to\infty} F_N(\lambda) \ge \frac{1}{1+\gamma} \liminf_{N\to\infty} \frac{\Delta_{\text{row}}}{M} + \frac{\gamma}{1+\gamma} \liminf_{N\to\infty} \frac{\Delta_{\text{col}}}{N}, \tag{3}$$

where

$$\Delta_{\text{row}}(N) := \mathbb{E}_{Z,X} \ln Z_{N+1,M_{N+1}} - \mathbb{E}_{Z,X} \ln Z_{N,M_{N+1}}, \tag{4}$$

$$\Delta_{\operatorname{col}}(N) := \mathbb{E}_{Z,X} \ln Z_{N,M_N+1} - \mathbb{E}_{Z,X} \ln Z_{N,M_N}. \tag{5}$$

Discovered jointly with: Barbier, Rahman, Camilli, Okajima

Row Cavity Method: Reduce the problem from *NM* dimensions to M = o(N) dimensions.

Row Cavity Method: Reduce the problem from *NM* dimensions to M = o(N) dimensions.

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times M} \times \mathbb{R}^{M}$

$$H_{N+1}(\mathbf{x}) = z_N(\mathbf{x}, \mathbf{w}) + H'_N(\mathbf{x}), \qquad H_N(\mathbf{x}) = y_N(\mathbf{x}) + H'_N(\mathbf{x}).$$

Row Cavity Method: Reduce the problem from *NM* dimensions to M = o(N) dimensions.

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times M} \times \mathbb{R}^{M}$

$$H_{N+1}(\mathbf{x}) = z_N(\mathbf{x}, \mathbf{w}) + H'_N(\mathbf{x}), \qquad H_N(\mathbf{x}) = y_N(\mathbf{x}) + H'_N(\mathbf{x}).$$

Concentration of $X^{\intercal}x$ under $\langle \cdot \rangle'$

$$\begin{split} &\frac{1}{M} (\mathbb{E}_{Z,X} \ln Z_{N+1,M}(\lambda) - \mathbb{E}_{Z,M} \ln Z_{N,M}(\lambda)) \\ &= \frac{1}{M} \bigg(\mathbb{E} \ln \bigg\langle \int e^{z_N(\mathbf{x},w)} d\, \mathbb{P}_X^{\otimes M}(w) \bigg\rangle' - \mathbb{E} \ln \bigg\langle e^{y_N(\mathbf{x})} \bigg\rangle' \bigg) \\ &\approx &\frac{1}{M} \bigg(\mathbb{E} \ln \left[\int \exp \left(\sqrt{\lambda \mathbf{Q}} \mathbf{z} \cdot \mathbf{w} + \lambda \mathbf{w}^\mathsf{T} \mathbf{Q} \mathbf{x} - \frac{\lambda \mathbf{w}^\mathsf{T} \mathbf{Q} \mathbf{w}}{2} \right) d\, \mathbb{P}_X^{\otimes M}(w) \right] \\ &- \frac{\lambda \operatorname{tr}(\mathbf{Q}^2)}{4} \bigg) \end{split}$$

Row Cavity Method: Reduce the problem from *NM* dimensions to M = 1 dimensions.

Split into cavity fields $(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{N \times M} \times \mathbb{R}^{M}$

$$H_{N+1}(\mathbf{x}) = z_N(\mathbf{x}, \mathbf{w}) + H'_N(\mathbf{x}), \qquad H_N(\mathbf{x}) = y_N(\mathbf{x}) + H'_N(\mathbf{x}).$$

Concentration of $X^{\intercal}x$ under $\langle \cdot \rangle'$

$$\begin{split} &\frac{1}{M} (\mathbb{E}_{Z,X} \ln Z_{N+1,M}(\lambda) - \mathbb{E}_{Z,M} \ln Z_{N,M}(\lambda)) \\ &= \frac{1}{M} \bigg(\mathbb{E} \ln \bigg\langle \int e^{z_N(\mathbf{x},w)} d \, \mathbb{P}_X^{\otimes M}(w) \bigg\rangle' - \mathbb{E} \ln \bigg\langle e^{y_N(\mathbf{x})} \bigg\rangle' \bigg) \\ &\approx \frac{1}{M} \bigg(\mathbb{E} \ln \bigg[\int \exp \bigg(\sqrt{\lambda \mathbf{Q}} \mathbf{z} \cdot \mathbf{w} + \lambda \mathbf{w}^\mathsf{T} \mathbf{Q} \mathbf{x} - \frac{\lambda \mathbf{w}^\mathsf{T} \mathbf{Q} \mathbf{w}}{2} \bigg) \, d \, \mathbb{P}_X^{\otimes M}(w) \bigg] \\ &\qquad - \frac{\lambda \operatorname{tr}(\mathbf{Q}^2)}{4} \bigg) \\ &= \sup_{q} \varphi_1(q) \end{split}$$

Technique 2: Rank Dependent Concentration

Theorem 5 (Barbier – K – Rahman)

Let \mathbb{P}_X be a centered distribution with bounded fourth moment and s_N a constant going to 0. There exists a perturbation of the posterior and a finite positive constant C independent of M,N and depending only on properties of \mathbb{P}_X such that

$$\frac{1}{s_N} \int_{s_N}^{2s_N} \mathbb{E} \langle \| \boldsymbol{X}^\mathsf{T} \boldsymbol{x} - \langle \boldsymbol{X}^\mathsf{T} \boldsymbol{x} \rangle_{N,\epsilon} \|_{\mathrm{F}}^2 \rangle_{N,\epsilon} \, \mathrm{d}\epsilon \leq \Gamma(N,M) := \frac{CM^2}{\sqrt{Ns_N}},$$

where the expectation $\mathbb{E}[\cdot]$ is taken over \widetilde{Z} , X and the randomness in $\mathbb{P}_{\mathrm{out}}(\cdot \mid XX^{\mathsf{T}})$ and $\langle \cdot \rangle$ is the average with respect to a perturbed posterior.

Technique 3: Rank 1 Equivalence

Theorem 6 (Barbier - K - Rahman)

Under some regularity hypothesis on the replica symmetric formula. For all SNR $\lambda \geq 0$

$$\sup_{Q} \frac{1}{k} \varphi_k(\mathbf{Q}) = \sup_{q} \varphi_1(q). \tag{6}$$

Remember that

$$\varphi_1(q) = -\frac{\lambda q^2}{4} + \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda q} z x + \lambda q x X - \frac{\lambda q^2 x^2}{2}\right) d \, \mathbb{P}_X(x) \right].$$

$$\varphi_k(\mathbf{Q}) = -\frac{\lambda \operatorname{tr}(\mathbf{Q}^2)}{4} + \mathbb{E} \ln \left[\int \exp\left(\sqrt{\lambda \mathbf{Q}} \mathbf{z} \cdot \mathbf{x} + \lambda \mathbf{x}^{\mathsf{T}} \mathbf{Q} X - \frac{\lambda \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}}{2} \right) d \, \mathbb{P}_X^{\otimes k}(\mathbf{x}) \right].$$

Column Cavity

Need to compute

$$\lim_{N \to \infty} \frac{1}{N} \big(\mathbb{E}_{Z,X} \ln Z_{N,M_N+1} - \mathbb{E}_{Z,X} \ln Z_{N,M_N} \big)$$

Column Cavity

Need to compute

$$\lim_{N\to\infty}\frac{1}{N}(\mathbb{E}_{Z,X}\ln Z_{N,M_N+1}-\mathbb{E}_{Z,X}\ln Z_{N,M_N})$$

If N is sufficiently large and M grows sufficiently slowly, then

$$egin{aligned} rac{1}{N} (\mathbb{E}_{Z,X} \ln Z_{N,M_N+1} - \mathbb{E}_{Z,X} \ln Z_{N,M_N}) &pprox (M_N+1) \sup_q arphi_1(q) - M_N \sup_q arphi_1(q) \ &= \sup_q arphi_1(q) \end{aligned}$$

Column Cavity

Need to compute

$$\lim_{N\to\infty}\frac{1}{N}(\mathbb{E}_{Z,X}\ln Z_{N,M_N+1}-\mathbb{E}_{Z,X}\ln Z_{N,M_N})$$

If N is sufficiently large and M grows sufficiently slowly, then

$$\frac{1}{N} (\mathbb{E}_{Z,X} \ln Z_{N,M_N+1} - \mathbb{E}_{Z,X} \ln Z_{N,M_N}) \approx (M_N + 1) \sup_{q} \varphi_1(q) - M_N \sup_{q} \varphi_1(q)$$

$$= \sup_{q} \varphi_1(q)$$

Careful proof: We can use the cavity computations again to reduce it to the finite rank cases

Predictions: Extensive Rank Case

Consider the case where $M = \alpha N$.

Challenges:

• Deal with increments in N and M simultaneously

Predictions: Extensive Rank Case

Consider the case where $M = \alpha N$.

Challenges:

- Deal with increments in N and M simultaneously
- Overlap concentration might not hold

Idea: Multiscale-Mean-Field Theory (1st Scale)

Reduction: Reduce the problem from *NM* dimensions to $M = \alpha N$ dimensions.

Idea: Multiscale-Mean-Field Theory (1st Scale)

Reduction: Reduce the problem from *NM* dimensions to $M = \alpha N$ dimensions.

Row Cavity: By the Aizenman-Sims-Starr scheme, suffices to compute

$$\lim_{N\to\infty}\frac{1}{M}\mathbb{E}_{\tilde{Y}(\lambda),Y'(\zeta)}\ln\bigg\langle\int_{\mathbb{R}^M}\exp(H_{N,M}^{row}(\boldsymbol{\eta};\bar{\boldsymbol{X}},\lambda))\,d\,\mathbb{P}_X^{\otimes M}(\boldsymbol{\eta})\bigg\rangle'$$

where $H_{N,M}^{row}(\eta; \bar{X}, \lambda)$ is the loglikelihood of the RLE problem.

Idea: Multiscale–Mean–Field Theory (1st Scale)

Reduction: Reduce the problem from *NM* dimensions to $M = \alpha N$ dimensions.

Row Cavity: By the Aizenman-Sims-Starr scheme, suffices to compute

$$\lim_{N \to \infty} \frac{1}{M} \mathbb{E}_{\tilde{Y}(\lambda), Y'(\zeta)} \ln \bigg\langle \int_{\mathbb{R}^M} \exp(H^{row}_{N,M}(\boldsymbol{\eta}; \bar{\boldsymbol{X}}, \lambda)) \, d \, \mathbb{P}_X^{\otimes M}(\boldsymbol{\eta}) \bigg\rangle'$$

where $H_{N,M}^{row}(\eta; \bar{X}, \lambda)$ is the loglikelihood of the RLE problem.

Random Linear Estimation: Cavity fields can be written as a RLE problem

$$\tilde{\mathbf{Y}}(\lambda) = \sqrt{\frac{\lambda}{N}} \bar{\mathbf{X}} \mathbf{H} + \tilde{\mathbf{Z}}$$
 (7)

$$Y'_{ij}(\zeta) = \sqrt{\frac{\zeta}{N}} \mathbf{X}_i^{\mathsf{T}} \mathbf{X}_j + Z_{ij}, \quad 1 \le i < j \le N - 1.$$
 (8)

Goal: Infer the cavity vector $\mathbf{H} \in \mathbb{R}^M$ given the side information on the bulk matrix $\bar{\mathbf{X}} \in R^{N-1 \times M}$.

Idea: Multiscale-Mean-Field Theory (2nd Scale)

Reduction: Reduce the problem from N dimensions to 1 dimensions.

Idea: Multiscale-Mean-Field Theory (2nd Scale)

Reduction: Reduce the problem from N dimensions to 1 dimensions.

Ansatz: Assume the bulk measure is a sample from the effective field

$$\mathbf{Y}'_{\text{eff}} = \sqrt{\sigma}\mathbf{X} + Z'_{\text{eff}} \in \mathbb{R}^{(N-1) \times M}.$$

$$\begin{split} &\lim_{N\to\infty}\frac{1}{M}\mathbb{E}_{\tilde{Y}(\lambda),Y'(\zeta)}\ln\bigg\langle\int_{\mathbb{R}^{M}}\exp(H_{N,M}^{row}(\boldsymbol{\eta};\bar{\boldsymbol{X}},\lambda))\,d\,\mathbb{P}_{X}^{\otimes M}(\boldsymbol{\eta})\bigg\rangle'\\ &\stackrel{?}{=}\lim_{N\to\infty}\frac{1}{M}\mathbb{E}_{\tilde{Y}(\lambda),Y'(\zeta)}\ln\bigg\langle\int_{\mathbb{R}^{M}}\exp(H_{N,M}^{row}(\boldsymbol{\eta};\bar{\boldsymbol{X}},\lambda))\,d\,\mathbb{P}_{X}^{\otimes M}(\boldsymbol{\eta})\bigg\rangle_{eff}. \end{split}$$

Idea: Multiscale-Mean-Field Theory (2nd Scale)

Reduction: Reduce the problem from N dimensions to 1 dimensions.

Ansatz: Assume the bulk measure is a sample from the effective field

$$\mathbf{Y}'_{\mathit{eff}} = \sqrt{\sigma}\mathbf{X} + Z'_{\mathit{eff}} \in \mathbb{R}^{(N-1) \times M}.$$

$$\begin{split} &\lim_{N \to \infty} \frac{1}{M} \mathbb{E}_{\tilde{Y}(\lambda), Y'(\zeta)} \ln \left\langle \int_{\mathbb{R}^M} \exp(H_{N,M}^{row}(\eta; \bar{\boldsymbol{X}}, \lambda)) \, d \, \mathbb{P}_X^{\otimes M}(\eta) \right\rangle' \\ &\stackrel{?}{=} \lim_{N \to \infty} \frac{1}{M} \mathbb{E}_{\tilde{Y}(\lambda), Y'(\zeta)} \ln \left\langle \int_{\mathbb{R}^M} \exp(H_{N,M}^{row}(\eta; \bar{\boldsymbol{X}}, \lambda)) \, d \, \mathbb{P}_X^{\otimes M}(\eta) \right\rangle_{eff}. \end{split}$$

Compute and Optimize: This choice makes the row cavity computable, and we pick σ to satisfy some self consistency criteria to conclude that

$$\begin{split} &\lim_{N \to \infty} \frac{1}{M} \mathbb{E}_{\tilde{Y}(\lambda), Y'(\zeta)} \ln \left\langle \int_{\mathbb{R}^M} \exp(H_{N,M}^{row}(\boldsymbol{\eta}; \bar{\boldsymbol{X}}, \lambda)) \, d \, \mathbb{P}_X(\boldsymbol{\eta}) \right\rangle_{\text{eff}} \\ &= \text{extr}_{-} \{ \iota(r, \boldsymbol{q}; \alpha, \lambda) \} \end{split}$$

Key Assumption: The bulk measure is equivalent to the posterior sample from the model

$$\mathbf{Y}'_{eff} = \sqrt{\sigma}\mathbf{X} + Z'_{eff} \in \mathbb{R}^{(N-1)\times M}.$$

The ansatz gives an exact result for finite rank

Key Assumption: The bulk measure is equivalent to the posterior sample from the model

$$\mathbf{Y}'_{eff} = \sqrt{\sigma}\mathbf{X} + Z'_{eff} \in \mathbb{R}^{(N-1)\times M}$$
.

- The ansatz gives an exact result for finite rank
- The ansatz corresponds to replica symmetry from the point of view of spin distributions (Panchenko)

Key Assumption: The bulk measure is equivalent to the posterior sample from the model

$$\mathbf{Y}'_{eff} = \sqrt{\sigma} \mathbf{X} + Z'_{eff} \in \mathbb{R}^{(N-1) \times M}$$
.

- The ansatz gives an exact result for finite rank
- The ansatz corresponds to replica symmetry from the point of view of spin distributions (Panchenko)
- Overlap concentration no longer holds

Key Assumption: The bulk measure is equivalent to the posterior sample from the model

$$\mathbf{Y}'_{eff} = \sqrt{\sigma}\mathbf{X} + Z'_{eff} \in \mathbb{R}^{(N-1)\times M}$$
.

- The ansatz gives an exact result for finite rank
- The ansatz corresponds to replica symmetry from the point of view of spin distributions (Panchenko)
- Overlap concentration no longer holds
- Failure of the Ghirlanda-Guerra identities

Summary

Rotationally Invariant I.I.D. Priors:

Finite Rank	Sublinear Rank	Extensive Rank
MI proved for all $M < \infty$	MI proved for $M = o(N)$	Explicit

Non-Rotationally Invariant I.I.D. Priors:

Finite Rank	Sublinear Rank	Extensive Rank
MI proved for all $M < \infty$	MI proved for $M = \log N$	Predictions

Thank you!

Numerical Results: Behavior of the Overlaps

Numerical Results: Behavior of the Overlaps

Numerical Results: Entries of the Overlaps

Numerical Results: Entries of the Overlaps

Denoising Phase:

• Diagonal and offdiagonals are on the same order

Factorization Phase:

Denoising Phase:

- Diagonal and offdiagonals are on the same order
- Can only infer XX^T.

Factorization Phase:

Denoising Phase:

- Diagonal and offdiagonals are on the same order
- Can only infer **XX**^T.

Factorization Phase:

Strong diagonals

Denoising Phase:

- Diagonal and offdiagonals are on the same order
- Can only infer XX^T.

Factorization Phase:

- Strong diagonals
- Can infer X.

Denoising Phase:

- Diagonal and offdiagonals are on the same order
- Can only infer XX^T.

Factorization Phase:

- Strong diagonals
- Can infer X.

Goal: Prove that the overlaps have this asymptotic structure.

Numerical Results: Non-Rotational Invariant Prior

Algorithmic Phase Transition

Algorithmic Phase Transition

Statistical-to-Computational Gap: Need a strong informative initialization to beat the RIE