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Spiked Wigner Matrix: Johnstone ’00

Infer matrix X € RN*M from the noisy matrix Y € RNV*N

Structure: X € RV*M matrix with i.i.d. entries from a known (centered)

prior Px.
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ool ZARETTTN
A L
» o
< ' P
g | Statistically 1 Algorithmically;  Algorithmically
g| Impossible Hard ; Easy -
g | -
3} ‘
S []
e ‘
) '
2 ‘
g Optimal algo :
Sl------ Spectral algo
e ------ Bayesian algo )
1 1 >
AIT )\Algo Signal-to-noise



Main Question: Phase Diagram

4”0_-7§< ?i_-\\
0 0 ‘
A | |
— I —————————————— ‘:. e -
8 1 1 Py "
g | Statistically i Algorithmically;  Algorithmically
g| Impossible Easy .
B ] )
] 1
= ]
£ :
0 ]
| Optimal algo| :
Sl1----- Spectral algo
~l------ Bayesian algo _
— 1 >
>\Algo Signal-to-noise



Bayesian Inference

Goals: Compute the matrix mean squared error of the matrix XXT

N
1 .
MMSEn()) = v E min E[(X; - X; — 0:;,(Y))?]
ij=1
1

E[XXT — (xxT)3

~ NM2

where (-) denotes the average with respect to the posterior.



Bayesian Inference

Goals: Compute the matrix mean squared error of the matrix XXT

N
MMSEp(\) = ﬁ > min E[(X; - X; — 0:;(Y))?]
ij=1
!
~ NM?

E[|XXT — (xxT)||3
where (-) denotes the average with respect to the posterior.

Posterior:

exp(=3 1Y — FxxT|]3)
C(Y)

dP(x|Y)= d PYN*M(x).



Statistical Goals

Connection: IMMSE — Relation

d 1 1

Mutual Information: Compute the mutual information

ME[XTX]||2 1
/(X; Y) 0= M - WEZ,X In ZN,M (1)

where

1
WEZ’X In ZN,M

is the free entropy.



Statistical Physics

Goals: Compute the free entropy

1
FkLM(A):::jgﬁiEZ}XanMLM

where
Zym = / exp(Hn(x)) APV (x)
RN XM

denotes the partition function associated with the Hamiltonian
2
+ cons

1 A
N=l — — T
Hu(x) : 2HY \/ T )
1 /A A A
— i T2 ToxT — 7 vy TyyT
2tr( NZxx + NXX XX 2Nxx XX )




The Dimension of the Signal Matrix

We want to study the free entropy for different ranks with both
rotationally invariant and non-rotationally invariant priors:

e Rank 1 / Finite Rank Case: M = k < 0.
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The Dimension of the Signal Matrix

We want to study the free entropy for different ranks with both
rotationally invariant and non-rotationally invariant priors:

e Rank 1 / Finite Rank Case: M = k < o0.

e Sublinear Rank: M(N) = o(N), M(N) — occ.

e Extensive Rank: M(N) = aN, a > 0.

The problem gets harder to analyze as we transition from rank 1 to
extensive rank problems

Extensive Rank Setting: Understand extensive-width shallow neural
networks (Barbier et al.), Matrix least squares (Ma—Fan)
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Rank 1: Phase Diagram
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Known Results: Rank 1 Case

Consider the scenario where M = 1.

Theorem 1 (Barbier et al, Lelarge - Miolane, El Alaoui—Krzakala)

1
Nlinoo NEZ’X InZy1(\) = Sl;;p v1(q).
Replica Symmetric Functional:

2o 2

2
01(q) = _)\Tq +EIn {/exp (\/)\qzx—&— AgxX — )\q2x ) d]P’X(x)].
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. 1
lim NEZ,X In Zy,1(A) = sup ¢1(q).
q

N—oco

Replica Symmetric Functional:

P02

2 A
01(q) = 7)\Tq +Eln {/exp (\/)\qzx+ AgxX — q2X > d]P’X(x)].

Overlap Concentration (Barbier): Nishimori identity
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where (-) is the average with respect to the posterior.
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Known Results: Rank 1 Case

Consider the scenario where M = 1.
Theorem 1 (Barbier et al, Lelarge - Miolane, El Alaoui—Krzakala)

. 1
,Jinoo NEZ’X In ZN,l()\) = SL;P (,01(‘7)-

Replica Symmetric Functional:

2 2,2
01(q) = _)\Tq +Eln {/exp (\/)\qzx—f— AgxX — >\q2x ) dIP’X(x)].

Overlap Concentration (Barbier): Nishimori identity

(7))

where (-) is the average with respect to the posterior.

Order Parameter: The maximizing g satisfies
g= lim N7'E(x-X)eR
N— oo

Phase Diagram: Analyzing the maximizer (Lesieur et al.)



Known Results: Rank k Case

Consider the scenario where M = k < oo.
Theorem 2 (Lelarge - Miolane, Barbier - K - Rahman)

1 1
[i —E = — = .
im z.x In Zy k(N) Sgp k@k(Q) Sl‘;P ©1(q)

Replica Symmetric Functional: Let Q € R<*k

Atr(@)
4

+Eln {/exp (\/EZ'X-F)\XTQX— )\XT2QX> dpf?k(x) .

ox(Q) =

10



Known Results: Rank k Case

Consider the scenario where M = k < oo.

Theorem 2 (Lelarge - Miolane, Barbier - K - Rahman)

N—oo

. 1 1
lim —EzxInZyk(\) = sup —¢x(Q) = supp1(q).
Nk Q k q

Replica Symmetric Functional: Let Q € R<*k
Atr(@?)

4
+Eln [/exp (\/Ez-x+AxTQx — Mf") dPYk(x)|.

er(Q) =

Order Parameter: The maximizing Q satisfies

Q=N"1! lim E(XTx) e RF*k

N— o0

10
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Known Results: Sublinear Rank Case

Intermediate Problem: Consider the scenario where M = o(N).

1. Configurations x € RN*M now grow simultaneously in both
coordinates.
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Known Results: Sublinear Rank Case

Intermediate Problem: Consider the scenario where M = o(N).

1. Configurations x € RN*M now grow simultaneously in both
coordinates.

2. Concentration stills holds if M grows slowly.

3. The order parameters will be independent of N due to symmetries.

12



Main Result

Consider the scenario where M = log(N).

Theorem 3 (Limiting Free Energy (Barbier - K - Rahman))

If X has i.i.d. from a bounded centered distribution and ¢ is sufficiently
regular in X\, then

lim Fym(X) = sup ¢1(q).
N—oo q

Replica Symmetric Functional:

g2

p1(q) =~ +Eln Uexp <\/sz 4 AgxX — A";X2> dIP’X(x)].
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Main Result

Consider the scenario where M = log(NN).

Theorem 3 (Limiting Free Energy (Barbier - K - Rahman))

If X has i.i.d. from a bounded centered distribution and ¢ is sufficiently
regular in \, then

|
N—o0

im Fym(N) = sup¢1(q).
q

Replica Symmetric Functional:

> 2,2

Spherical priors / Rotational Invariant Priors: Husson-Ko for
M = o(N)

13
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Extensive Rank Case

Consider the scenario where M = a/N.

RNXM

1. Configurations x € now grow simultaneously in both

coordinates.
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Extensive Rank Case

Consider the scenario where M = a/N.

1. Configurations x € RN*M now grow simultaneously in both
coordinates.

2. Concentration fails because M grows too fast.

3. There is no good notion of the order parameters Q € RM*M in the

limit.

15



Known Results: Rotational Invariant Prior

Gaussian Prior (Unstructured): Xj ~ N(0,1)
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Known Results: Rotational Invariant Prior

Gaussian Prior (Unstructured): Xj ~ N(0,1)

MMSE: Using HCIZ integrals (Matytsin, Guionnet—Zeitouni),

lim MMSEn(\) = — (1 iln (y)d
i = — - —
Nh N o 5 J| PR

where py is the limiting spectral distribution of Y.

Mutual Information: Using HCIZ integrals,

N—oco

. 1 ] - 1 1
lim W/(XX’ Y)= %o + 5 /py(x)py(y)ln |x — y| dxdy.

Conjecture: This is correct for all priors (e.g. Px is Rademacher)
(Semerjian).
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Numerical Results: Non-Rotational Invariant Prior

Px = %(51 + %5_1, a=20.5

Gaussian M1,
N — o0

—4— N=10
—4— N=20
—4— N =40

Mutual Information

125 150 175 200



Numerical Results: Non-Rotational Invariant Prior

-5
‘;’i ¥ 5 10 15
0.4 —— RIE (Rad.)
—== RIE (Gauss)
0.2 —— MMSE (Rad.)
0.0 : . ; : .
0 2 4 6 8 10 12

A 17



Qualitative Phase Diagram
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Qualitative Phase Diagram

a

A

A

Denoising
(Universal, easy)

Factorisation
(Non-universal; hard)
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»
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Random Matrix Theory — Spin Glass Theory
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Results: Prediction of the Ml

Result 1 ( Barbier - Camilli - K - Okajima)
If the prior is factorized there exists a Ac > 0 such that for all X\ > A,

lim I(X;Y)=extr_{c(r,q;a,\)}
N—oo
where
e, 1 _ P
ur,g,a,\) = 5 + o In(1+ Aa(1—q%))

2,2

—Eln Uexp (sz X — A’2X ) dPX(x)}
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Results: Prediction of the Ml

Result 2 ( Barbier - Camilli - K - Okajima)
If the prior is factorized there exists a A > 0 such that for all X\ > A,

lim I(X;Y) =extr_{c(r,q;a,\)}

N— oo
where
. _h 1 .
or; g0, ) = = + = In(1+ o1 - ¢%))

' Ar2x?
—Eln exp [ VArzx + ArxX — 5 dPx(x)

Remark: Same result if you use the replica trick assuming a Gaussian
ansatz in Sakata—Kabashima.

19



Results: Prediction of the Denoising—Factorization Transition

Rotationally Invariant Mutual Information:

1

1
to(A) = 3a T om py (X)py (y)In|x — y| dxdy

Non-Rotationally Invariant Mutual Information:

tr(N) = extr_{u(r, q; , \) }.
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Results: Prediction of the Denoising—Factorization Transition

Rotationally Invariant Mutual Information:

1(3) = — + =

% T py (xX)py (y)In|x — y| dxdy

Non-Rotationally Invariant Mutual Information:

tr(N) = extr_{u(r, q; , \) }.

Result 3 (Barbier - Camilli - K - Okajima)
If the prior is factorized then for all X > 0,

(X;Y) =min(cp, te).

lim [/
N—oo
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Results: Prediction of the Denoising—Factorization Transition

Rotationally Invariant Mutual Information:

- 8a 2«

Non-Rotationally Invariant Mutual Information:

te(A) = extr_{u(r, g; o, \) }.

1o() oy (x)py(y) Infx — y] dxdy

Result 4 (Barbier - Camilli - K - Okajima)
If the prior is factorized then for all A > 0,

lim [(X;Y)=min(cp,tF).

N— oo

Critical \:
Ae =sup{A >0 |ip < e}

20



Results: Comparison with Simulations

Mutual Info
il B oo rank-1 Gauss

v rank-1 Rad

—— multiscale Gauss

—— multiscale Rad

=== multiscale Rad met.

——— exact Gauss
theory Rad

..... entropy Rad N=inf.

....... entropy Rad N=40
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Results: Comparison with Simulations

a=0.7

........ rank-1 Gauss
-------- rank-1 Rad
—— multiscale Gauss
— multiscale Rad
1=i=is paramagnetic
—— exact Gauss

theory Rad
,,,,,,,,,, MCMC Rad

-
>
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Challenges: Extensive Rank Case

Goal: Compute the theoretical curve for the Ml when X is large.
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Challenges: Extensive Rank Case

Goal: Compute the theoretical curve for the Ml when X is large.

Strategy: Adapt the techniques from spin glasses (Guerra,
Aizenman-Sims—Starr, Talagrand, Panchenko, Lelarge-Miolane)
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Review: Rank k Case

Lower Bound - Guerra’s Interpolation: Gaussian interpolation with
the replica symmetric functional.

24



Review: Rank k Case

Cavity Method: Reduce the problem from N dimensions to k
dimensions.
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Review: Rank k Case

Cavity Method: Reduce the problem from N dimensions to k

dimensions.

Write

. 1 : 1

lim sup MEZ’X In ZN,k(/\) S lim sup E (EZ,X In ZN+1,I<()\)_EZ,X In ZN_’;((/\))
Split into cavity fields (x, w) € RVXk x Rk

Hny1(x) = zn(x, w) + Hy(x), Hn(x) = yn(x) + Hy(x).

Ez xInZyy1k(A) —Ez x In Zy (N)
=FEIn / eZN(X,W)ﬁLHI/\I(X)dP;Sék(W)dP%Nk(x) —FEln / eyN(x)JrH,’V(X) d]P;ggNk(X)

!
:E|n</ezN(x’W)dP§?k(W)> —ElIn <ey’V(X)>

!
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Review: Rank k Case

Cavity Method: Reduce the problem from N dimensions to k
dimensions.

Write
lim sup ﬁEz,x In Zy x(\) < lim sup % (]ELX In Zys1.4(\)—Ez.x In ZNﬁk()\)>
Split into cavity fields (x, w) € RN*k x Rk
Hui1(x) = zn(x, w) + Hy(x),  Hn(x) = yn(x) + Hy(x).
Concentration of XTx under (-)’

Ez x In Zyy1,k(N) —Ez x In Zy «(X)
=EIn / eZN(X,W)+Hll\/(X)dP§k(W)d P?Nk(x) —Eln / eyN(x)+H//V(X) d]P);eéNk(X)

2
~ Eln {/exp (\/Ez w+AwTQx — )\WT2QW> dP?k(W):| — %

24



Review: Sublinear Rank Case

Consider the case where M = o(N).

Challenges:

e Deal with increments in N and M simultaneously
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Review: Sublinear Rank Case

Consider the case where M = o(N).

Challenges:

e Deal with increments in N and M simultaneously

e Overlap concentration still holds if M grows sufficiently slowly
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Technique 1: Multiscale Cavity Method

Theorem 4 (Barbier — K — Rahman)
For scaling parameters o > 0, v > 0, and My = |aN” |, we have

row

A ACO
limsup Fy(A) < lim sup TR lim sup —=! (2)

N—oco 1+’7 N— oo M 1+’7 N—oco N
and
N 1 oo Arow Y o g Acol
>
PR il S e U T
where
Arow(N) :=Ez x In Zyy1,my,, — Ez x In Znmy,s s (4)

Acol(N) = Ez7x|nZN7MN+1 —EZ,Xm ZN,MN- (5)
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Technique 1: Multiscale Cavity Method

Theorem 4 (Barbier — K — Rahman)
For scaling parameters o > 0, v > 0, and My = |aN” |, we have

. o Arow Y 0 Acol
limsup Fy(A) < limsu + limsu 2
N S T e Ty ey @
and
A 1 oo Arow Y o a Acol
>
PR il AR e A TR
where
Avow(N) :=Ez x In Zny1,my,, — Ez x In Zn,myss s (4)
Acol(N) = Ez7x|nZN7MN+1 7EZ$X|n ZN,MN- (5)

Discovered jointly with: Barbier, Rahman, Camilli, Okajima

26



Review: Sublinear Rank Case

Row Cavity Method: Reduce the problem from NM dimensions to
M = o(N) dimensions.

27



Review: Sublinear Rank Case

Row Cavity Method: Reduce the problem from NM dimensions to
M = o(N) dimensions.

Split into cavity fields (x, w) € RV*M »x RM

Hni1(x) = zn(x, w) + Hy(x),  Hi(x) = yn(x) + Hy(x).

27



Review: Sublinear Rank Case

Row Cavity Method: Reduce the problem from NM dimensions to
M = o(N) dimensions.

Split into cavity fields (x, w) € RV*M »x RM
Hui1(x) = zn(x, w) + Hy(x),  Hn(x) = yn(x) + Hy(x).

Concentration of XTx under (-)’

1
M(EZ’X In ZN+1,M()\) — EZ,M In ZN,M(/\))

- A1/1<Eln</ezN(va)dIP’§?M(w)> —Eln <ey"’(x)> )
~ (Eln [/exp <\//\Qz~ w4+ AwTQx — AWTQW) dIP’%?M(W)]

M 2
B Atr(Q?)
4

27



Review: Sublinear Rank Case

Row Cavity Method: Reduce the problem from NM dimensions to
M =1 dimensions.

Split into cavity fields (x, w) € RV*M »x RM
Hiia(x) = zn(x, w) + Hy(x),  Hi(x) = yn(x) + Hp(x).

Concentration of XTx under (-)’

1
M(EZ’X In ZN+1,M()\) — EZ,M In ZN,M()\))

_ A1/1<Eln < /ez~<x7w>d1@>§“”(w)> _En <ey~<x>> >
%% <IEIn [/exp <\//\Qz- w -+ AwTQx — /\WTQW) dP?M(W)]

2
B AtriQ )>

= sup¢1(q)
27



Technique 2: Rank Dependent Concentration

Theorem 5 (Barbier — K — Rahman)

Let Px be a centered distribution with bounded fourth moment and sy a

constant going to 0. There exists a perturbation of the posterior and a
finite positive constant C independent of M, N and depending only on
properties of Px such that

(e = = . CcM?
— E{|X x = (X xX)n.e cde < T(N, M) := ,
AL (I (X" X)n.cll@)w, (N, M) NGE

where the expectation E[ -] is taken over Z. X and the randomness in
Pout( - | XXT) and {-) is the average with respect to a perturbed
posterior.

28



Technique 3: Rank 1 Equivalence

Theorem 6 (Barbier - K - Rahman)

Under some regularity hypothesis on the replica symmetric formula. For
all SNR X >0

sup 1 04(@) = sup 21(9). ©)
Q q

Remember that

2

2,2
01(q) = _)\Tq +EIn {/exp (\/)\qzx—&— AgxX — )\q2x ) dIP’X(X)].

A tr(Q?)
4

+Eln {/exp <\/)\Qz-x+)\xTQX—

ox(Q) =

“;QX) B (x)

29



Column Cavity

Need to compute

. 1
I|m f(Ez_Xh’] ZN,MN+]_ —Ezyxm ZN,MN)
N—oo N

30



Column Cavity

Need to compute
. 1
I|m f(Ez_X In ZN,MN+]_ o= EZ,X In ZN,MN)
N—oo N

If N is sufficiently large and M grows sufficiently slowly, then

1
N(Ez,x In Znmy+1 — Bz x In Zy my) = (Mn + 1) sup 01(q) — Mn sup ¢1(q)
q q

= sup¢1(q)
q

30



Column Cavity

Need to compute
. 1
NlE;noc N(EZ.X InZy my+1 — Ezx InZy my)
If N is sufficiently large and M grows sufficiently slowly, then
1
N(Ez,x In Zyn,my+1 — Ez x In Zy,my) = (My + 1) sup ¢1(q) — My sup ¢1(q)

= sup¢1(q)
q

Careful proof: We can use the cavity computations again to reduce it to
the finite rank cases

30



Predictions: Extensive Rank Case

Consider the case where M = alN.

Challenges:

e Deal with increments in N and M simultaneously
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Predictions: Extensive Rank Case

Consider the case where M = alN.

Challenges:

e Deal with increments in N and M simultaneously

e Overlap concentration might not hold

31



Idea: Multiscale-Mean—Field Theory (1st Scale)

Reduction: Reduce the problem from NM dimensions to M = aN
dimensions.

32



Idea: Multiscale-Mean—Field Theory (1st Scale)

Reduction: Reduce the problem from NM dimensions to M = aN

dimensions.

Row Cavity: By the Aizenman—Sims—Starr scheme, suffices to compute

. 1 n o _ /
Jim LB < | etz X)) dﬂ”i’?M(n)>

where H% (1; X, \) is the loglikelihood of the RLE problem.
N,M
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Idea: Multiscale-Mean—Field Theory (1st Scale)

Reduction: Reduce the problem from NM dimensions to M = aN
dimensions.

Row Cavity: By the Aizenman—Sims—Starr scheme, suffices to compute

; 1 row .Y QM /
Nl'_>moo MEV(ALY’(C) In </]R’V’ exp(Hy' 1 (m: X, \)) d Py (77)>
where H,’V""’Xﬂ(n;)_(,)\) is the loglikelihood of the RLE problem.

Random Linear Estimation: Cavity fields can be written as a RLE

Y(\) = ﬁ)‘(H+2 (7)
Y;J"(C)Z\/EX,TXJ-JFZU, 1<i<j<N-1. (8)

Goal: Infer the cavity vector H € RM given the side information on the
bulk matrix X € RN-1xM,

problem
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Idea: Multiscale-Mean—Field Theory (2nd Scale)

Reduction: Reduce the problem from N dimensions to 1 dimensions.
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Idea: Multiscale-Mean—Field Theory (2nd Scale)

Reduction: Reduce the problem from N dimensions to 1 dimensions.

Ansatz: Assume the bulk measure is a sample from the effective field

Yor = VoX + Zyy € RVDXM,

. 1 row /
im 2-E500 v { [ el X. ) 4B ()

? o ]- row
= ||m ( ) y/(c) In eXp(HN M(nY 7/\)) d]P);@éM(n)
RM

eff
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Idea: Multiscale-Mean—Field Theory (2nd Scale)

Reduction: Reduce the problem from N dimensions to 1 dimensions.
Ansatz: Assume the bulk measure is a sample from the effective field

Yir = Vo X + Zy € RN-DXM,

. /
il W]E 7 )w(c)'“</R exp(Hipy(m; X A))c”P’S’?M(n)>

2

[4 ]- row
2 lim 2Bgqvion{ [ oM X.2) dEM ()

N—oo M eff

Compute and Optimize: This choice makes the row cavity computable,
and we pick o to satisfy some self consistency criteria to conclude that

M 1 row
im0 { [ elHitm X.2) dPx(n) )

N— oo

=extr_{u(r,q;a,\)}

eff
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Towards a Rigorous Result: Behavior of the Overlaps

Key Assumption: The bulk measure is equivalent to the posterior
sample from the model

Y. = VoX 4+ Zlp € RN-D*M,

e The ansatz gives an exact result for finite rank
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Towards a Rigorous Result: Behavior of the Overlaps

Key Assumption: The bulk measure is equivalent to the posterior
sample from the model

Y. = VoX 4+ Zlp € RN-D*M,

e The ansatz gives an exact result for finite rank

The ansatz corresponds to replica symmetry from the point of view
of spin distributions (Panchenko)

Overlap concentration no longer holds

Failure of the Ghirlanda—Guerra identities
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Rotationally Invariant 1.1.D. Priors:

Finite Rank Sublinear Rank Extensive Rank
MI proved for all M < oo | MI proved for M = o(N) Explicit

Non-Rotationally Invariant 1.1.D. Priors:

Finite Rank Sublinear Rank Extensive Rank
MI proved for all M < oo | MI proved for M = log N Predictions
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Thank youl!



Numerical Results: Behavior of the Overlaps

A = 0.000 A = 1.606
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Numerical Results: Behavior of the Overlaps

A = 6.000
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Numerical Results: Entries of the Overlaps

0.40 77! random patterns
[ )\ =0.4991
0.35 [ A =1.0104
[ A=2.0145
0.30 1 X =4.0239
A =6.0332

overlap
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Numerical Results: Entries of the Overlaps

041 Off-diagonal
Diagonal

0.3 1

0.2 1

0.1

0.0 = " " JH

75 50 -25 00 25 50 175
overlap
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Conjecture: Overlap Structure

Denoising Phase:

e Diagonal and offdiagonals are on the same order

Factorization Phase:
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Conjecture: Overlap Structure

Denoising Phase:

e Diagonal and offdiagonals are on the same order
e Can only infer XXT.

Factorization Phase:

e Strong diagonals

e Can infer X.

Goal: Prove that the overlaps have this asymptotic structure.
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Numerical Results: Non-Rotational Invariant Prior

Gaussian M1,
N — o0

—4— N=10
—4— N=20
—4— N =40

Mutual Information
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Algorithmic Phase Transition

a=0.7

MSE

1.0

<
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Algorithmic Phase Transition

a=0.7

O MCMC Rad uninfo.
A MCMC Rad uninfo. averaged
< MCMC Rad info.

- RIE

0.2
00000QO0O0O0O

A_A A A A A

Statistical-to-Computational Gap: Need a strong informative
initialization to beat the RIE
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