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Cumulants

Given a non-commutative probability space (ncps) (A, φ) where A is an
algebra and φ is a linear functional s.t. φ(1) = 1, we define the free
cumulants κn : An → C by the recursive equation

φ(a1 · · · an) =
∑

π∈NC(n)

∏
V∈π

V={i1,...,ij}

κ|V |(ai1 , . . . , aij ). (1)
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First few cumulants

E(a) = κ1(a) = c1(a)

E(ab) = κ2(a, b) + κ1(a)κ1(b) = c2(a, b) + c1(a)c1(b)

Thus

c2(a, b) = κ2(a, b) = E(ab)− E(a)E(b)

E(abc) = κ3(a, b, c) + κ2(a, b)κ1(c) + κ2(a, c)κ1(b)

+ κ2(b, c)κ1(a) + κ1(a)κ1(b)κ1(c)

c3(a, b, c) = κ3(a, b, c) = E(abc)− E(c)E(ab)− E(b)E(ac)

− E(a)E(bc) + 2E(a)E(b)E(c)
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Fourth free and classical cumulant

E(abcd) = κ4(a, b, c , d) +A(a, b, c, d)

= c4(a, b, c, d) +A(a, b, c, d) + c2(a, c)c2(b, d).

Here,

A(a, b, c , d) =
∑

π∈P(4)
π ̸=14

π ̸={1,3}{2,4}

κπ(a, b, c, d) =
∑

π∈P(4)
π ̸=14

π ̸={1,3}{2,4}

cπ(a, b, c , d)
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Free cumulants and moments

Cumulants determine the distribution as they determine the moments (and
viceversa).

Example

If κn(a) = 0 for any n ̸= 2 and κ2(a) = 1 then

φ(an) = |NC (n)|,

which determines the semicircle distribution.

Daniel Munoz (The University of Hong Kong) Third order cumulants of Products August 13, 2025 5 / 23



Free cumulants with product as entries

Naturally, it is interesting to compute the cumulants whose entries are
products; for n1, . . . , np integers we let

Ni =

ni∑
j=1

nj .

Ai =

Ni∏
j=Ni−1+1

aj = aNi−1+1aNi−1+2 · · · aNi
.

for 1 ≤ i ≤ p and n1, . . . , np integers.
Question: What are the free cumulants of

κp(A1, . . . ,Ap)

equal to in term of the cumulants of a′i s.
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Cumulants with product as entries formula

Theorem (Krawczyk, Speicher, 2000)

For n =
∑p

i=1 ni

κp(A1, . . . ,Ap) =
∑

π∈NC(n)
π∨γ=1n

κπ(a1, . . . , an), (2)

where γ = (1, . . . ,N1)(N1 + 1, . . . ,N2) · · · (Np−1 + 1, . . . , n).
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Example

κ2(ab, cd) = κ1(a)κ3(b, c , d) + κ1(b)κ3(a, c , d) + κ1(c)κ3(a, b, d)

+ κ1(d)κ3(a, b, c) + κ2(a, d)κ2(b, c) + κ4(a, b, c , d)
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Second order free cumulants

Definition (Second order free cumulants)

Let (A, φ, φ2) be a second order non-commutatve probability space. The
second order free cumulants are the family of multilinear functionals
{κn,m : An ×Am → C}n,m≥1 recursively defined by the following formula:

φn,m(a1, . . . , an+m) := φ2(a1 · · · an, an+1 · · · an+m)

=
∑

(U ,π)∈PSNC (n,m)

κ(U ,π)(a1, . . . , an+m)

=
∑

(U ,π)∈SNC (n,m)

κ(U ,π)(a1, . . . , an+m)

+
∑

(U ,π)∈S ′
NC (n,m)

κ(U ,π)(a1, . . . , an+m).
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Second order cumulants of products

Mingo, Speicher and Tan, [2], showed that

π ∨ γn = 1n ⇔ π−1γn

has no cycle with two elements of N =: {N1, . . . ,Np}. Here
γn = (1, . . . , n).

Theorem (Mingo, Speicher and Tan, ’09)

κr ,s(A1, . . . ,Ar ,Ar+1, . . . ,Ar+s) =
∑

(V,π)∈PSNC (p,q)

κV,π(a1, . . . , ap+q), (3)

where the summation is over (V, π) such that no cycle of π−1γp,q has two
elements of N. Here the permutation
γp,q = (1, . . . , p)(p + 1, . . . , p + q) ∈ Sp+q with p = n1 + · · ·+ nr and
q = nr+1 + · · ·+ nr+s .
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Third order cumulants with products as entries

Theorem (Arizmendi, Sigarreta and M. ’25)

κr ,s,t(A1, . . . ,Ar+s+t) =
∑

(V,π)∈PSNC (p,q,l)

κ(V,π)(a1, . . . , ap+q+l) (4)

where the summation is over those (V, π) ∈ PSNC (p, q, l) such that
π−1γp,q,l separates the points of N := {n1, n1 + n2, . . . , n1 + · · ·+ nr+s+t}
and p = n1 + · · ·+ nr , q = nr+1 + · · ·+ nr+s and
l = nr+s+1 + · · ·+ nr+s+t .
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Partitioned permutations on two circles

SNC (6, 4) PSNC (4, 6)
′
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Partitioned permutations

A partitioned permutation is a pair (V, π) consisting of π ∈ Sn and
V ∈ P(n) with π ≤ V. The set of partitioned permutations is denoted by
PSn. We let,

|(V, π)| = 2|V| − |π|,

with |V| = n −#(V) and |π| = n −#(π). It is satisfied,

|(V ∨ U , πσ)| ≤ |(V, π)|+ |(U , σ)|.

For (V, π), (W, σ) ∈ PSn we define their product as,

(V, π)·(W, σ) =

{
(V ∨W, πσ) if |(V ∨W, πσ)| = |(V, π)|+ |(W, σ)|,
0 otherwise
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Partitioned permutations

Definition

For (U , γ) ∈ PSn fixed we say that (V, π) ∈ PSn is (U , γ)-non crossing if,

(V, π) · (0π−1γ , π
−1γ) = (U , γ).

The set of (U , γ)-non crossing partitioned permutations will be denote by
PSNC (U , γ).

Let m1, . . . ,mr ∈ N and

γm1,...,mr := (1, . . . ,m1) · · · (m1 + · · ·+mr−1 + 1, . . . ,m),

with m =
∑r

i=1mi . We use the notation,

PSNC (m1, . . . ,mr ) := PSNC (1m, γm1,...,mr ).
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PSNC (m) = {(0π, π) : π ∈ NC (m)} ∼= NC (m).

PSNC (1m1+m2 , γm1,m2) = {(0π, π) | π ∈ SNC (m1,m2)}
∪ {(V, π) | π ∈ NC (m1)× NC (m2),V ∨ γ = 1n and |V| = |π|+ 1}

In the first part we have SNC (m1,m2) and in the second part
S ′
NC (m1,m2). We shall write

PSNC (m1,m2) = SNC (m1,m2) ∪ S ′
NC (m1,m2).
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Higher order free cumulants

Definition

Given a higher order probability space (A, (φ(s))rs=1) we let the free
cumulants of order at most r be given by the recursive equation

φ(U ,γ)(a1, . . . , an) =
∑

(V,π)∈PSNC (U ,γ)

κ(V,π)(a1, . . . , an).
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higher order free cumulants for small values

φ1,1(a, b) = κ2(a, b) + κ1,1(a, b),

φ1,2(a, b, c) = κ3(a, b, c) + κ3(a, c , b) + κ2(a, b)κ1(c) + κ2(a, c)κ1(b)

+ κ1,1(a, b)κ1(c) + κ1,1(a, c)κ1(b) + κ1,2(a, b, c).

φ1,1,1(a, b, c) = κ3(a, b, c) + κ3(a, c , b) + κ1,2(a, b, c) + κ1,2(b, a, c)

+ κ1,2(c, a, b) + κ1,1,1(a, b, c).
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Sketch of the proof

The main idea on the proof is that from the moment-cumulant formula,

φ2(A1 · · ·Ar ,Ar+1 · · ·Ar+s) =
∑

π∈SNC (r ,s)

κπ(A1, . . . ,Ar+s)

+
∑

(V,π)∈PSNC (r ,s)′

κ(V,π)(A1, . . . ,Ar+s)

and,

φ2(A1 · · ·Ar ,Ar+1 · · ·Ar+s) =
∑

π∈SNC (p,q)

κπ(a1, . . . , ap+q)

+
∑

(V,π)∈PSNC (p,q)′

κ(V,π)(a1, . . . , ap+q)
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Sketch of the proof

Thus

κr ,s(A1, . . . ,Ar+s) =
∑

π∈SNC (p,q)

κπ(a1, . . . , ap+q)

+
∑

(V,π)∈PSNC (p,q)′

κ(V,π)(a1, . . . , ap+q)

−
∑

π∈SNC (r ,s)

κπ(A1, . . . ,Ar+s)

−
∑

(V,π)∈PSNC (r ,s)′\(1r+s ,γr,s)

κ(V,π)(A1, . . . ,Ar+s)
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Possible directions

1 Higher order cases?

2 Is it possible to extend the idea of the proof on the first order case to
higher orders?
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