# On the moments of the derivative of CUE characteristic polynomials inside the unit disc

#### Fei Wei

Mathematics Department
University of Sussex
Based on joint work with Nick Simm (arXiv:2409.03687)

Log-gases in Caeli Australi Matrix Institute, Creswick, 4-15 August 2025

## Contents

- Some background on connections between number theory and random matrix theory
- Main results
- Proof Sketch of the Main Results
- Further questions

1. Some background on connections between number theory and random matrix theory

## Riemann zeta function

When Re(s) > 1,

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} (1 - \frac{1}{p^s})^{-1}.$$

Pole: *s* = 1

Functional equation:

$$\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s) = \pi^{-(1-s)/2}\Gamma(\frac{1-s}{2})\zeta(1-s)$$

Trivial zeros:  $s = -2, -4, -6, -8, \cdots$ 

Non-trivial zeros:  $0 < \text{Re}(s_n) < 1$ .

Riemann Hypothesis:  $\forall n$ , Re $(s_n) = 1/2$ , i.e.,  $s_n = \frac{1}{2} + it_n$  for  $t_n \in \mathbb{R}$ .

## Connections with random matrix theory

Set 
$$w_n = \frac{t_n}{2\pi} \log \frac{|t_n|}{2\pi}$$
.

#### Conjecture (Montgomery, 1972)

Let f(x) be an integrable function with a compact support,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n\neq m\leq N}f(w_n-w_m)=\int_{-\infty}^{\infty}f(x)\left(1-\left(\frac{\sin(\pi x)}{\pi x}\right)^2+\delta(x)\right)dx,$$

where  $\delta(x)$  is the Dirac delta function such that  $\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$ .

Montgomery's conjecture can be proved for a restricted class of test functions f(x), e.g., if the Fourier transform of f(x) is supported on [-1,1].

Denote the eigenvalues of an  $N \times N$  unitary matrix A by  $e^{i\theta_n(A)}$  and set  $\phi_n(A) = \frac{N}{2\pi}\theta_n(A)$ .

#### Theorem (CUE Pair Correlation - Dyson, 1963)

$$\lim_{N\to\infty}\int_{U(N)}\frac{1}{N}\sum_{n\neq m\leq N}f(\phi_n(A)-\phi_m(A))dA_N$$

$$=\int_{-\infty}^{\infty}f(x)\left(1-\left(\frac{\sin(\pi x)}{\pi x}\right)^2+\delta(x)\right)dx.$$

The n-point correlation function

$$R_n(Q) = \frac{1}{N} \# \{j_1, \dots, j_n \le N \text{ distinct } : (w_{j_1} - w_{j_2}, \dots, w_{j_{n-1}} - w_{j_n}) \in Q\}$$

for a box  $Q \subset \mathbb{R}^{n-1}$ .

Summarize the above,

Let  $A \in U(N)$  be taken from the Circular Unitary Ensemble (CUE) of random matrices.

The characteristic polynomial of A:

$$\Lambda_N(z) := \det(I - zA^*) = \prod_{n=1}^N (1 - ze^{-i\theta_n}),$$

where  $e^{i\theta_1}, \dots, e^{i\theta_N}$  are the eigenvalues of A.

$$\mathbb{E}[|\Lambda_N(z)|^s] := \int_{U(N)} |\Lambda_N(z)|^s d\nu_{Haar}, \mathbb{E}[|\Lambda_N'(z)|^s] := \int_{U(N)} |\Lambda_N'(z)|^s d\nu_{Haar}$$

The distribution of zeros of  $\Lambda_N \xrightarrow{\text{model}}$  The distribution of zeros of  $\zeta$  The distribution of zeros of  $\Lambda_N' \xrightarrow{\text{model}}$  The distribution of zeros of  $\zeta'$ 

A.Speiser (1934):

 $\mathsf{RH} \Leftrightarrow \zeta'(s) \text{ has no nonreal zeros in the region } \{\sigma + \mathfrak{i}t : \sigma < 1/2\}.$ 

Soundararajan's Conjecture (1998) (horizontal distribution):

$$\frac{\#\{\sigma + it : \sigma \le \frac{1}{2} + \frac{c}{\log T}, 0 \le t \le T, \zeta'(\sigma + it) = 0\}}{\#\{\sigma + it : 0 \le t \le T, \zeta'(\sigma + it) = 0\}}$$

$$\xrightarrow{T \to \infty} \quad \rho(c) = \begin{cases} 0 & \text{if } c \le 0 \\ \in (0, 1) & \text{if } c > 0 \\ \to 1 & \text{if } c \to \infty \end{cases}$$

Correspondingly (radial distribution):  $\log T$  above correspond to N below,

$$\frac{\mathbb{E}[\#\{z: \Lambda_N'(z) = 0, 1 \geq |z| \geq 1 - \frac{c}{N}\}]}{N} \quad \xrightarrow{N \to \infty} \quad \rho(c).$$

## A question proposed by Brian Conrey

Jessen's formula:

$$\frac{1}{2\pi} \int_0^{2\pi} \log |\Lambda'_N(re^{i\theta})| d\theta - \log |\Lambda'_N(0)| = \int_0^r \frac{n_N(t)}{t} dt,$$

where  $n_N(r)$  be the number of zeros of  $\Lambda'_N(z)$  inside the disc of radius r centered at the origin.

By the translation-invariance of the Haar measure

$$\mathbb{E}[\log |\Lambda'_{N}(re^{i\theta})|]$$
 (independent of  $\theta$ )

we have

$$\int_0^r \frac{\mathbb{E}[n_N(t)]}{t} dt = \mathbb{E}[\log |\Lambda'_N(r)|] - \mathbb{E}[\log |\Lambda'_N(0)|]$$
$$= \frac{d}{ds} \mathbb{E}[|\Lambda'_N(r)|^s]\Big|_{s=0} - \frac{d}{ds} \mathbb{E}[|\Lambda'_N(0)|^s]\Big|_{s=0}.$$

So this is one motivation to study

$$\mathbb{E}[|\Lambda'_N(r)|^s].$$



# Another background: A connection to the moments of the Riemann zeta function on the critical line

Keating-Snaith's work and conjecture (2000):

$$g_s := \lim_{N \to \infty} \frac{1}{N^{s^2}} \mathbb{E}[|\Lambda_N(1)|^{2s}] = \frac{G^2(s+1)}{G(2s+1)}$$
 for  $Re(s) > -1/2$ ,

where G(s) is the Barnes G-function.

Keating-Snaith's Conjecture

$$\frac{1}{T}\int_0^T |\zeta(\frac{1}{2}+\mathrm{i} t)|^{2s}dt \sim \operatorname{a_s}g_s(\log T)^{s^2}, \quad T\to\infty.$$

In number theory,  $g_1 = 1$ ,  $g_2 = 2$  and conjectured  $g_3 = 42$ ,  $g_4 = 24024$ .

This coincides with  $\frac{G^2(s+1)}{G(2s+1)}$  with s=1,2,3,4.

More evidence was shown in the work on a "hybrid" representation of the Riemann zeta function by Gonek, Hughes and Keating (2007).

Here as is the arithmetic factor

$$a_{s} = \prod_{p} \left( 1 - \frac{1}{p} \right)^{s^{2}} \sum_{m=0}^{\infty} \left( \frac{\Gamma(m+s)}{m! \cdot \Gamma(s)} \right)^{2} p^{-m}.$$

Hughes' conjecture (2001):

$$\begin{split} &\frac{1}{T}\int_0^T |\zeta'(\frac{1}{2}+\mathrm{i}t)|^{2s}dt \sim a_s b_s (\log T)^{s^2+2s}, \quad T \to \infty \\ &\text{where } b_s := \lim_{N \to \infty} \frac{1}{N^{s^2+2s}} \mathbb{E}[|\Lambda'_N(1)|^{2s}] \end{split}$$

- Hughes (2001): derived an expression for b<sub>s</sub>
- Conrey, Rubinstein, and Snaith (2006): gave an expression for b<sub>s</sub> in terms of a Hankel determinant
- Forrester and Witte (2006): established a connection of b<sub>s</sub> to a solution of σ-Painlevé III'
- Assiotis, Keating and Warren (2022): proved the existence of b<sub>s</sub> for noninteger and real s, and gave a probabilistic representation of b<sub>s</sub>
- .....

Question 1: What is about

$$\mathbb{E}[|\Lambda_N(z)|^{2s}]$$
 and  $\mathbb{E}[|\Lambda_N'(z)|^{2s}]$ 

when |z| < 1?

Question 2: Is there a connection between them and Number theory, specifically

$$\lim_{T\to\infty}\frac{1}{T}\int_1^T |\zeta'(\sigma+\mathfrak{i}t)|^{2s}dt \quad \text{for } \sigma>1/2?$$

Forrester and Keating (2004): for |z| < 1,

$$\lim_{N \to \infty} \mathbb{E}[|\Lambda_N(z)|^{2s}] = \frac{1}{(1 - |z|^2)^{s^2}}.$$

Our focus is on the study of

$$\mathbb{E}[|\Lambda'_N(z)|^{2s}].$$



2. Main results

# Global regime

#### Theorem 1

For any fixed z with |z| < 1 and any  $s \in \mathbb{C}$  with Re(s) > -1, we have

$$\lim_{N\to\infty} \mathbb{E}\left(|\Lambda_N'(z)|^{2s}\right) = \frac{e^{-s^2|z|^2}\Gamma(s+1)}{(1-|z|^2)^{s^2+2s}} \, {}_1F_1(s+1,1;s^2|z|^2)$$

where  $_1F_1(a,b;z)$  is the confluent hypergeometric function of the first kind given by

$$_{1}F_{1}(a,b;z) = \sum_{k=0}^{\infty} \frac{a^{(k)}}{b^{(k)}} \frac{z^{k}}{k!},$$

and 
$$a^{(k)} = \Gamma(a+k)/\Gamma(a)$$
.

Ref: N Simm and F Wei, On moments of the derivative of CUE characteristic polynomials and the Riemann zeta function, *arXiv:2409.03687*, 2024.

# An application to the radial distribution of zeros of $\Lambda'_{N}(z)$

#### Corollary

Let  $n_N(r)$  be the number of zeros of  $N_N(z)$  inside the disc of radius r centered at the origin. Then uniformly with respect to r on any closed subset of [0,1), we have

$$\lim_{N\to\infty}\int_0^r \frac{\mathbb{E}(n_N(t))}{t}dt = -\log(1-r^2)$$

and

$$\lim_{N\to\infty}\mathbb{E}(n_N(r))=\frac{2r^2}{1-r^2}.$$

From the above Corollary, we also give a limit function for the radial density of the zeros of  $\Lambda'_{N}(z)$ . Specifically, we have that

$$\lim_{N \to \infty} \frac{d}{dr} \mathbb{E}(n_N(r)) = \frac{d}{dr} (\frac{2r^2}{1 - r^2}) = \frac{4r}{(1 - r^2)^2}.$$

This provides an alternative method to re-obtain Mezzadri's result [J. Phys. A, 36(12):2945-2962, 2003].

# A connection to the moments of the derivatives of the Riemann zeta function off the critical line

#### Recall

|        | Random Matrix Theory               | Number Theory                                                     |
|--------|------------------------------------|-------------------------------------------------------------------|
| z =1   | $\mathbb{E}[ \Lambda_N(z) ^{2s}]$  | $\frac{1}{T}\int_0^T  \zeta(\frac{1}{2}+it) ^{2s}dt$              |
|        | $\sim g_s {\it N}^{s^2}$           | $\sim$ $a_s g_s (\log T)^{s^2}$                                   |
| z  = 1 | $\mathbb{E}[ \Lambda_N'(z) ^{2s}]$ | $\frac{1}{7}\int_0^T  \zeta'(\tfrac{1}{2}+\mathfrak{i}t) ^{2s}dt$ |
|        | $\sim b_s {\it N}^{s^2+2s}$        | $\sim a_s b_s (\log T)^{s^2+2s}$                                  |

Here

$$a_{s} = \prod_{p} \left(1 - \frac{1}{p}\right)^{s^{2}} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+s)}{m! \cdot \Gamma(s)}\right)^{2} p^{-m}.$$



|                        | Random Matrix Theory                                                             | Number Theory                                                              |
|------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| z  < 1                 | $\lim_{N	o\infty}\mathbb{E}[ \Lambda_N(z) ^{2s}]$                                | $\lim_{T \to \infty} \frac{1}{T} \int_0^T  \zeta(\sigma + it) ^{2s} dt$    |
| $\sigma > \frac{1}{2}$ | $= \frac{1}{(1- z ^2)^{s^2}}$                                                    | ~?                                                                         |
| z  < 1                 | ${\sf lim}_{{\mathcal N}	o\infty}{\mathbb E}[ {\Lambda'_{\mathcal N}}(z) ^{2s}]$ | $\lim_{T\to\infty}\frac{1}{T}\int_0^T \zeta'(\sigma+\mathrm{i} t) ^{2s}dt$ |
| $\sigma > \frac{1}{2}$ | $= \frac{d_s}{(1- z ^2)^{s^2+2s}}$                                               | ~?                                                                         |

Hardy and Littlewood(1923): for  $\sigma > \frac{1}{2}$ ,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T |\zeta(\sigma+\mathfrak{i}t)|^{2s}dt$$

compute s = 1, 2.

Titchmarsh: Assume the truth of the Lindelöf hypothesis (i.e.,  $|\zeta(\frac{1}{2}+\mathrm{i}t)|=O(|t|^{\varepsilon})$  for any  $\varepsilon>0$ ), for any  $s\in\mathbb{R}$ ,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T|\zeta(\sigma+\mathfrak{i} t)|^{2s}dt\sim\frac{a_s}{(2\sigma-1)^{s^2}},\quad \sigma\to\frac{1}{2}.$$

|                        | Random Matrix Theory                                                             | Number Theory                                                                    |
|------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| z  < 1                 | ${\sf lim}_{{\mathcal N}	o\infty}{\mathbb E}[ {\Lambda}_{\mathcal N}(z) ^{2s}]$  | $\lim_{T 	o \infty} rac{1}{T} \int_0^T  \zeta(\sigma + \mathrm{i} t) ^{2s} dt$  |
| $\sigma > \frac{1}{2}$ | $= \frac{1}{(1- z ^2)^{s^2}}$                                                    | $\sim \frac{a_s}{(2\sigma-1)^{s^2}},  \sigma \to \frac{1}{2}$                    |
|                        |                                                                                  | Conjecture:                                                                      |
| z  < 1                 | ${\sf lim}_{{\mathcal N}	o\infty}{\mathbb E}[ {\Lambda'_{\mathcal N}}(z) ^{2s}]$ | $\lim_{T 	o \infty} rac{1}{T} \int_0^T  \zeta'(\sigma + \mathrm{i} t) ^{2s} dt$ |
| $\sigma > \frac{1}{2}$ | $=\frac{d_{s}}{(1- z ^{2})^{s^{2}+2s}}$                                          | $\sim rac{a_s d_s}{(2\sigma-1)^{s^2+2s}},  \sigma  ightarrow rac{1}{2}$        |

Theorem: Assume the truth of the Lindelöf hypothesis, the Conjecture holds for positive integer *s*.

We also compute s = 1,2 unconditionally.

## Microscopic regime

#### Theorem 3 (for finite matrix size *N*)

We have the following exact formula, valid for any  $z \in \mathbb{C}$  and any positive integers N, s,

$$\mathbb{E}[|\Lambda_N'(z)|^{2s}] = \sum_{\lambda,\mu \in Y_s} \frac{f_\lambda f_\mu}{\lambda ! \mu !} \det \left\{ (u^{\lambda_i + s - i} K_N^{(\lambda_i + s - i)}(u))^{(\mu_j + s - j)} \right\}_{i,j=1}^s$$

where  $u = |z|^2$  and

$$K_N(u) = \sum_{j=0}^{N+s-1} u^j.$$

Here

 $Y_n$ : the set of partitions  $\lambda$  satisfying  $|\lambda| = n$ .

 $f_{\lambda}$ : the number of standard Young tableaux of type  $\lambda$ ,

$$f_{\lambda} = \frac{|\lambda|!}{\prod_{(i,j)\in\lambda} h(i,j)}.$$

h(i,j): the hook length of (i,j).



### Theorem 4 (Microscopic limit)

Let  $|z|^2=1-\frac{c}{N}$  for  $c\in\mathbb{R}$  fixed. In particular, the case |z|=1 corresponding to c=0 is allowed. Then for any positive integer s, as  $N\to\infty$  we have

$$\mathbb{E}[|\Lambda_N'(z)|^{2s}] \sim N^{s^2+2s} \sum_{\lambda,\mu \in Y_s} \frac{f_\lambda f_\mu}{\lambda \,!\, \mu \,!} \det \Big( \int_0^1 x^{\lambda_i + \mu_j + 2s - i - j} e^{-cx} \, dx \Big)_{i,j=1}^s$$

We also obtain the equivalent expression, as  $N \to \infty$ ,

$$\mathbb{E}(|\Lambda_N'(z)|^{2s}) \sim N^{s^2+2s} \frac{\partial^{2s}}{\partial v^s \partial w^s} \det \left\{ \left. \frac{\partial^{i+j-2} F_c(v,w)}{\partial v^{i-1} \partial w^{j-1}} \right\}_{i,j=1}^s \right|_{v=w=0},$$

where

$$F_c(v, w) = \int_0^1 J_0(2\sqrt{vx})J_0(2\sqrt{wx})e^{-cx}dx,$$

and  $J_0$  is the Bessel function of the first kind. Furthermore, the leading terms on the right-hand sides of the above asymptotics are strictly positive.

Commented by Bothner, the expression of  $F_c$  can be recognised as a particular case of the finite temperature Bessel kernel. When c=0, this is exactly the Bessel kernel.

Commented by Akemann, the expression of  $F_c$  has appeared in the RMT application to QCD (that is, Quantum Chromodynamics) with imaginary chemical potential.

3. Proof Sketch of the Main Results

## Approaches to Theorem 1

Step 1: Prove the following convergence for  $s \in \mathbb{C}$  with Re(s) > -1,

$$\lim_{N\to\infty} \mathbb{E}(|\Lambda_N'(z)|^{2s}) = \mathbb{E}(|\Lambda'(z)|^{2s}),$$

uniformly holds for any closed subset of  $\{z : |z| < 1\}$ , where

$$\Lambda(z) = e^{G(z)} = e^{\sum_{k=1}^{\infty} \frac{\mathcal{N}_k}{\sqrt{k}} z^k}$$

and  $\{\mathscr{N}_k\}_{k=1}^M$  are i.i.d. standard complex normal random variables with

$$\{\operatorname{Tr}(U^{-k})\}_{k=1}^M \xrightarrow{d} \{\mathscr{N}_k\}_{k=1}^M, \qquad N \to \infty,$$

implied by the strong Szegö limit theorem for Toeplitz determinants.

Step 2: Compute  $\mathbb{E}(|\Lambda'(z)|^{2s})$ .

## Sketch of the proof of Step 1 for Theorem 1

It follows from the the following result on the uniform integrability of  $\{|\Lambda_N(z)|^{2s}\}_N$ .

#### Lemma (Uniform integrability)

Assume that  $s \in \mathbb{C}$  with Re(s) > -1. Consider the quantity

$$X_N = |\Lambda'_N(z)|^{2s}$$
.

Then for any  $\delta>0$  fixed,  $|z|<1-\delta$  and for  $\varepsilon>0$  small enough and for N sufficiently large, there exists a constant C>0 independent of N and z such that

$$\mathbb{E}(|X_N|^{1+\varepsilon}) < C.$$

### Proposition (Bounds on negative moments)

For any a with  $0 \le a < 2$ , let r = |z| < 1 and N > 4. Then there is a constant C depending only on a and r such that

$$\mathbb{E}(|\Lambda'_{N}(r)|^{-a}) \leq C.$$

By Hölder's inequality,

$$\mathbb{E}(|\Lambda_N'(r)|^{-a}) \leq \mathbb{E}\left(\left|\frac{\Lambda_N'(r)}{\Lambda_N(r)}\right|^{-aq}\right)^{1/q} \mathbb{E}\left(|\Lambda_N(r)|^{-a\ell}\right)^{1/\ell}$$

where  $q = \frac{\ell}{\ell-1} > 1$  and we choose  $\ell$  large enough such that aq < 2.

Forrester and Keating: the boundness of  $\mathbb{E}(|\Lambda_N(r)|^{-a\ell})$ .

It reduced to proving the following boundedness for  $0 \le a < 2$ ,

$$\mathbb{E}\left(\left|\frac{\Lambda'_{N}(r)}{\Lambda_{N}(r)}\right|^{-a}\right)\leq C.$$



A linear statistics

$$\frac{\Lambda'_{N}(r)}{\Lambda_{N}(r)} = -\sum_{j=1}^{N} f(\theta_{j}),$$

where

$$f(\theta) = \frac{e^{-i\theta}}{1 - re^{-i\theta}} = \sum_{n=1}^{\infty} r^{n-1} e^{-in\theta}.$$

By integrating by parts, it reduced to proving for  $0 \le a < 2$ ,

$$\int_0^1 y^{-a-1} \mathbb{P}\left(\left|\frac{\Lambda'_N(r)}{\Lambda_N(r)}\right| < y\right) dy \le C$$

So it suffices to show

$$\mathbb{P}\left(\left|\frac{\Lambda'_N(r)}{\Lambda_N(r)}\right| < y\right) \le Cy^2.$$

#### Proposition (Small deviations inequality (Halász, 1977))

$$\begin{split} & \mathbb{P}\left(\left|\frac{\Lambda_N'(r)}{\Lambda_N(r)}\right| < y\right) \\ \leq & y^2 \int_{|\xi_1| < y^{-1}} \int_{|\xi_2| < y^{-1}} d\xi_1 \, d\xi_2 \, \left| \mathbb{E}\left(e^{i\xi_1 \text{Re}\left(\frac{\Lambda_N'(r)}{\Lambda_N(r)}\right) + i\xi_2 \text{Im}\left(\frac{\Lambda_N'(r)}{\Lambda_N(r)}\right)}\right) \right|, \end{split}$$

Split the above integral over three regions:

$$\begin{split} R_1 &= & \{ (\xi_1, \xi_2) : |\xi_1| + |\xi_2| < N \} \\ R_2 &= & \{ (\xi_1, \xi_2) : N \le |\xi_1| + |\xi_2| < N^8 \} \\ R_3 &= & \{ (\xi_1, \xi_2) : |\xi_1| + |\xi_2| > N^8 \} \end{split}$$

Estimates on the regions  $R_1$ ,  $R_2$  and  $R_3$ .

For 
$$(\xi_1, \xi_2) \in R_1 \cup R_2$$
,

Johansson(1997): Change of variables method + the inequality version of the strong Szegő limit theorem as follows,

$$\mathbb{E}[e^{\sum_{j=1}^{N}g(\theta_{j})}] \leq e^{N\hat{g}_{0} + \sum_{k \geq 1}k|\hat{g}_{k}|^{2}}$$

for a real-valued function  $g(\theta)$ .

#### Lemma

Let  $(\xi_1, \xi_2) \in R_1$ . There is a constant c > 0 depending only on r such that

$$\left| \mathbb{E} \left( e^{i\xi_1 \operatorname{Re} \left( \frac{\Lambda'_N(r)}{\Lambda_N(r)} \right) + i\xi_2 \operatorname{Im} \left( \frac{\Lambda'_N(r)}{\Lambda_N(r)} \right)} \right) \right| \leq e^{-c\xi_1^2 - c\xi_2^2}.$$

Let  $(\xi_1, \xi_2) \in R_2$ , we have

$$\left| \mathbb{E} \left( e^{i \xi_1 \text{Re} \left( \frac{\Lambda_N'(r)}{\Lambda_N(r)} \right) + i \xi_2 \text{Im} \left( \frac{\Lambda_N'(r)}{\Lambda_N(r)} \right)} \right) \right| \leq e^{-c N^2}.$$

### For $(\xi_1, \xi_2) \in R_3$ ,

A Toeplitz determinant representation

$$\left| \mathbb{E} \left( e^{\mathrm{i} \xi_1 \mathrm{Re} \left( \frac{\Lambda'_N(r)}{\Lambda_N(r)} \right) + \mathrm{i} \xi_2 \mathrm{Im} \left( \frac{\Lambda'_N(r)}{\Lambda_N(r)} \right)} \right) \right| = \det \left\{ \hat{h}_{j-k} \right\}_{j,k=0}^{N-1}$$

By Hadamard's inequality, the above

$$\leq \prod_{j=1}^{N} \left( \sum_{k=1}^{N} |\hat{h}_{j-k}|^2 \right)^{\frac{1}{2}}.$$

Then apply the stationary phase approximation to  $\hat{h}_k$ .

#### Lemma

Let  $(\xi_1, \xi_2) \in R_3$ . Then there is a constant C > 0 depending only on r such that for all N we have

$$\left|\mathbb{E}\left(e^{\mathrm{i}\xi_1 \mathrm{Re}\left(\frac{\Lambda_N'(r)}{\Lambda_N(r)}\right) + \mathrm{i}\xi_2 \mathrm{Im}\left(\frac{\Lambda_N'(r)}{\Lambda_N(r)}\right)}\right)\right| \leq C^N N^{-N/2} (|\xi_1| + |\xi_2|)^{-N/4}.$$

# Proof sketch of Step 2 in the approach to Theorem 1

We now compute  $\mathbb{E}(|\Lambda'(z)|^{2s})$  for Re(s) > -1.

Recall that

$$\Lambda'(z) = G'(z)e^{G(z)},$$

where

$$G(z) = \sum_{k=1}^{\infty} \frac{\mathcal{N}_k}{\sqrt{k}} z^k.$$

and

$$G'(z) = \sum_{k=1}^{\infty} \sqrt{k} \mathcal{N}_k z^{k-1}$$

## About the multivariate complex Gaussian vector (G(z), G'(Z)):

- The mean vector and the relation matrix are 0.
- The covariance matrix is

$$\Gamma = \begin{pmatrix} \mathbb{E}(|G(z)|^2) & \mathbb{E}(G(z)\overline{G'(z)}) \\ \mathbb{E}(\overline{G(z)}G'(z)) & \mathbb{E}(|G'(z)|^2) \end{pmatrix}$$
$$= \begin{pmatrix} -\log(1-|z|^2) & \frac{z}{1-|z|^2} \\ \frac{\overline{z}}{1-|z|^2} & \frac{1}{(1-|z|^2)^2} \end{pmatrix}$$

The joint density function

$$f(\mathbf{w}_1, \mathbf{w}_2) = \frac{1}{\pi^2 \det(\Gamma)} \exp\left(-\mathbf{w}^T \Gamma^{-1} \mathbf{w}\right)$$

with **w** =  $(w_1, w_2)^T$ .



$$\mathbb{E}(|\Lambda'(z)|^{2s}) = \int_{\mathbb{C}} d^2w_2 \int_{\mathbb{C}} d^2w_1 |w_2|^{2s} e^{sw_1 + s\overline{w_1}} f(w_1, w_2).$$

We first do the integral with respect to  $w_1$  and then do the integral with respect to  $w_2$ . It is then reduced to computing the following integral

$$\frac{1}{\pi} \int_{\mathbb{C}} d^2 w_2 |w_2|^{2s} e^{-|w_2|^2 + szw_2 + s\overline{zw_2}}$$

with  $z = \frac{\Gamma_{1,2}}{\sqrt{\Gamma_{2,2}}}$ . Expand inside the exponential, it is

$$\begin{split} &\sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(sz)^{k_1} (s\overline{z})^{k_2}}{(k_1)! (k_2)!} \frac{1}{\pi} \int_{\mathbb{C}} d^2 w_2 |w_2|^{2s} e^{-|w_2|^2} (w_2)^{k_1} (\overline{w_2})^{k_2} \\ &= \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(sz)^{k_1} (s\overline{z})^{k_2}}{(k_1)! (k_2)!} \delta_{k_1, k_2} \Gamma\left(s + \frac{k_1 + k_2}{2} + 1\right) \\ &= \sum_{k=0}^{\infty} \frac{\Gamma(s + k + 1)}{(k!)^2} s^{2k} |z|^{2k} \\ &= \Gamma(s + 1)_1 F_1(s + 1, 1; s^2 |z|^2). \end{split}$$

# Sketch the proof in the approach to Theorems 3 and 4

#### Theorem (Akemann and Vernizzi'00)

For  $s \in \mathbb{N}$ , the average of a product of 2s characteristic polynomials is

$$\mathbb{E}\left[\prod_{j=1}^{s}\det(I-z_{j}U)\det(I-w_{j}U^{*})\right] = \frac{\det\left\{\sum_{l=0}^{N+s-1}(z_{l}w_{j})^{l}\right\}_{i,j=1}^{s}}{\prod_{1\leq i< j\leq s}(z_{j}-z_{i})\prod_{1\leq i< j\leq s}(w_{j}-w_{i})}.$$

$$\mathbb{E}\left[|\Lambda'_{N}(z)|^{2s}\right] = \prod_{j=1}^{s} \frac{\partial}{\partial z_{j}} \frac{\partial}{\partial w_{j}} \mathbb{E}\left[\prod_{j=1}^{s} \det(I - z_{j}U) \det(I - w_{j}U^{*})\right] \bigg|_{\mathbf{z} = \mathbf{w} = |z|}.$$

## Our result

### Proposition (A proposition on the merge process)

Let  $n \ge 1$  be an integer. Let  $f(x_1,...,x_n)$  be a multivariate anti-symmetric polynomial, that is, for any permutation  $\sigma$  of  $\{1,2,...,n\}$ ,

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)}) = \operatorname{sign}(\sigma) f(x_1,\ldots,x_n).$$

Then

$$\prod_{i=1}^{n} \frac{\partial}{\partial x_{i}} \frac{f(x_{1}, \dots, x_{n})}{\prod_{1 \leq i < j \leq n} (x_{i} - x_{j})} \Big|_{x_{1} = \dots = x_{n} = x}$$

$$= \sum_{\lambda \in Y_{n}} \frac{f_{\lambda}}{\prod_{i=1}^{n} (\lambda_{i} + n - i)!} \prod_{i=1}^{n} \frac{\partial^{\lambda_{i} + n - i}}{\partial x_{i}^{\lambda_{i} + n - i}} f(x_{1}, \dots, x_{n}) \Big|_{x_{1} = \dots = x_{n} = x}.$$

Recall:  $Y_n$ : the set of partitions  $\lambda$  satisfying  $|\lambda| = n$ .  $f_{\lambda}$ : the number of standard Young tableaux of type  $\lambda$ ,

$$f_{\lambda} = \frac{|\lambda|!}{\prod_{(i,i)\in\lambda} h(i,j)}.$$

h(i,j): the hook length of (i,j).



Note that

$$K_N(u) = \frac{1 - u^{N+s}}{1 - u} = (N+s) \int_0^1 (1 - x(1-u))^{N+s-1} dx.$$

Let  $u=1-\frac{c}{N}.$  The leading coefficient of  $\mathbb{E}[|\Lambda_N'(1-\frac{c}{N})|^{2s}]$  is

$$b_s(c) := \sum_{\lambda, \mu \in Y_s} \frac{f_\lambda f_\mu}{\lambda! \mu!} \det \left\{ \int_0^1 x^{2s + \lambda_i - i + \mu_j - j} e^{-cx} dx \right\}_{i,j=1}^s.$$

By the Andréief identity and using the Schur polynomials,

$$b_{s}(c) = \frac{1}{s!} \int_{[0,1]^{s}} \left( \sum_{\lambda \in Y_{s}} \frac{f_{\lambda}}{\lambda!} s_{\lambda}(\mathbf{x}) \right)^{2} \prod_{j=1}^{s} e^{-cx_{j}} \Delta(\mathbf{x})^{2} d\mathbf{x}.$$

By Schur positivity,  $b_s(c) > 0$ .

The known relation between the hook length and the Schur polynomial evaluated at  $1_s = (1, ..., 1)$  with 1 appearing s times, in the form

$$f_{\lambda} = \frac{s_{\lambda}(1_s)}{\lambda!} \prod_{j=0}^{s} j!.$$

Then the sum in  $b_s(c)$  is

$$\sum_{\lambda \in Y_s} \frac{f_{\lambda}}{\lambda!} s_{\lambda}(\mathbf{x}) = \left( \prod_{j=0}^s j! \right) \frac{(-1)^s}{s!} \frac{\partial^s}{\partial v^s} \sum_{\lambda, l(\lambda) \le s} \frac{s_{\lambda}(1_s)}{(\lambda!)^2} s_{\lambda}(\mathbf{x}) (-v)^{|\lambda|} \bigg|_{v=0},$$

We now replace  $s_{\lambda}(1_s)(-v)^{|\lambda|}$  with  $s_{\lambda}(-\mathbf{v})$  where  $\mathbf{v}$  consists of s new variables. Due to homogeneity of the Schur polynomials, we then recover the desired quantity after taking  $\mathbf{v} = (v, v, \dots, v)$  in the end.

Using the Cauchy-Binet identity, we have

$$\sum_{\lambda,l(\lambda)\leq s} \frac{s_{\lambda}(\mathbf{x})s_{\lambda}(\mathbf{v})}{(\lambda!)^2} = \frac{\det\left\{\sum_{\ell=0}^{\infty} \frac{(-x_iv_j)^{\ell}}{(\ell!)^2}\right\}_{i,j=1}^{s}}{\Delta(\mathbf{x})\Delta(\mathbf{v})},$$

The function inside the above determinant is the series definition of the Bessel function of the first kind

$$J_0(2\sqrt{x}) = \sum_{j=0}^{\infty} \frac{(-x)^j}{(j!)^2}.$$

Recently, Akemann, Kieburg et al. a Borel transformation of the inital CUE kernel to obtain the Bessel function alternatively.

Further questions

## A question related to Painlevé equations

Without taking the derivative,

$$\mathbb{E}[|\Lambda_N(z)|^{2s}]$$

for |z| = 1, keating and Snaith(2000), Selberg integral;

for |z| < 1, for fixed matrix size N,

Deaño and Simm (2022):

$$\mathbb{E}[|\Lambda_{N}(z)|^{2s}] \quad \text{Re}(s) > -1$$

$$= \frac{1}{(2\pi i)^{N} N!} \int_{\{z:|z|=1\}^{N}} \prod_{j=1}^{N} \frac{dw_{j}}{w_{j}} w_{j}^{-s/2} |1 + w_{j}|^{s} (1 + z^{2}w_{j})^{s} \prod_{1 \leq i < j \leq N} |w_{i} - w_{j}|^{2}$$

Forrester and Witte(2004):

$$\mathbb{E}[|\Lambda_N(z)|^{2s}] = (1-|z|^2)^{-s^2} \exp\left(-\int_{1-|z|^2}^1 \frac{\sigma_{N,s}^{(VI)}(t) - c_1^2 t + \frac{c_1^2 + c_2^2}{2}}{t(1-t)} dt\right),$$

where  $\sigma_{N,s}^{({
m VI})}(t)$  satisfies the Jimbo-Miwa-Okamoto  $\sigma$ -form of the

Painlevé VI equation,  $c_1 = s + N/2$  and  $c_2 = N/2$ 

Actually, for integer s,

$$\mathbb{E}[|\Lambda_N(z)|^{2s}] = (1-|z|^2)^{-s^2} \mathbb{P}(t_{\text{max}}^{(0,N)} \le 1-|z|^2),$$

the largest eigenvalue distribution in the Jacobi ensemble.

Microscopic limit for  $|z|^2 = 1 - \frac{c}{N}$  with c > 0,

Rewrite  $\mathbb{E}[|\Lambda_N(z)|^{2s}]$  as a Toeplitz determinant,

$$z^{sN} \det \left\{ \frac{1}{2\pi} \int_0^{2\pi} m(e^{i\theta}, z) e^{i(k-j)\theta} d\theta \right\}_{k,j=0}^{N-1}$$

with symbol

$$m(e^{i\theta},z)=(e^{i\theta}-z)^s\left(e^{i\theta}-\frac{1}{z}\right)^se^{-i\theta s}e^{-i\pi s}.$$

Claeys, Its and Krasovsky(2011), Forrester and Witte(2002),

$$\mathbb{E}[|\Lambda_N(z)|^{2s}] \sim (N/c)^{s^2} \exp\left(-\int_c^\infty \frac{\sigma_s^{(V)}(t)}{t} dt\right), \quad \mathsf{Re}(s) > -\frac{1}{2}$$

with  $|z|^2 = 1 - \frac{c}{N}$ , where  $\sigma_s^{(V)}(t)$  satisfies the Jimbo-Miwa-Okamoto  $\sigma$ -form of the Painlevé V equation

$$(t\sigma'')^2 - [\sigma - t\sigma' + 2(\sigma')^2 + 2s\sigma']^2 + (4\sigma')^2(s + \sigma')^2 = 0.$$

Summarize the above,

| z  < 1                             | for finite matrix size N | Microscopic limit |
|------------------------------------|--------------------------|-------------------|
| $\mathbb{E}[ \Lambda_N(z) ^{2s}]$  | σ-Painlevé VI            | σ-Painlevé V      |
| $\mathbb{E}[ \Lambda_N'(z) ^{2s}]$ | ?                        | ?                 |

It is known by Forrester and Witte (2006), Basor, Bleher, Buckingham, Grava, Its, Its, and Keating (2019), Keating and Wei (2023), Assoitis, Gunes, Keating and Wei (2024),

| z =1                                    | for finite matrix size N | large <i>N</i> -limit |
|-----------------------------------------|--------------------------|-----------------------|
| $\mathbb{E}[ \Lambda_N'(z) ^{2s}]$      | σ-Painlevé V             | σ-Painlevé III'       |
| $\mathbb{E}[ \Lambda_N^{(n)}(z) ^{2s}]$ | the derivatives of       | the derivatives of    |
| <i>n</i> ≥ 2                            | σ-Painlevé V             | σ-Painlevé III'       |

## Thank you and

# Happy Birthday, Peter!

