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1. Some background on connections between number
theory and random matrix theory
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Riemann zeta function

When Re(s)> 1,

ζ (s) =
∞

∑
n=1

1
ns = ∏

p
(1− 1

ps )
−1.

Pole: s = 1

Functional equation:

π
−s/2Γ(

s
2
)ζ (s) = π

−(1−s)/2Γ(
1−s

2
)ζ (1−s)

Trivial zeros: s =−2,−4,−6,−8, · · ·

Non-trivial zeros: 0 < Re(sn)< 1.

Riemann Hypothesis: ∀n, Re(sn) = 1/2, i.e., sn = 1
2 + itn for tn ∈ R.
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Connections with random matrix theory

Set wn =
tn
2π

log
|tn|
2π

.

Conjecture (Montgomery, 1972)

Let f (x) be an integrable function with a compact support,

lim
N→∞

1
N ∑

n ̸=m≤N
f (wn −wm) =

∫
∞

−∞

f (x)

(
1−

(
sin(πx)

πx

)2

+δ (x)

)
dx ,

where δ (x) is the Dirac delta function such that
∫

∞

−∞
f (x)δ (x)dx = f (0).

Montgomery’s conjecture can be proved for a restricted class of test
functions f (x), e.g., if the Fourier transform of f (x) is supported on
[−1,1].
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Denote the eigenvalues of an N ×N unitary matrix A by eiθn(A) and

set φn(A) =
N
2π

θn(A).

Theorem (CUE Pair Correlation - Dyson, 1963)

lim
N→∞

∫
U(N)

1
N ∑

n ̸=m≤N
f (φn(A)−φm(A))dAN

=
∫

∞

−∞

f (x)

(
1−

(
sin(πx)

πx

)2

+δ (x)

)
dx .

The n-point correlation function

Rn(Q) =
1
N
#{j1, . . . , jn ≤ N distinct : (wj1 −wj2 , · · · ,wjn−1 −wjn) ∈ Q}

for a box Q ⊂ Rn−1.
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Summarize the above,

Let A ∈ U(N) be taken from the Circular Unitary Ensemble (CUE) of
random matrices.

The characteristic polynomial of A:

ΛN(z) := det(I −zA∗) =
N

∏
n=1

(1−ze−iθn),

where eiθ1 , . . . ,eiθN are the eigenvalues of A.

E[|ΛN(z)|s] :=
∫

U(N)
|ΛN(z)|sdνHaar ,E[|Λ′

N(z)|
s] :=

∫
U(N)

|Λ′
N(z)|

sdνHaar

The distribution of zeros of ΛN
model−−−→ The distribution of zeros of ζ

The distribution of zeros of Λ′
N

model−−−→ The distribution of zeros of ζ
′

A.Speiser (1934):
RH ⇔ ζ ′(s) has no nonreal zeros in the region {σ + it : σ < 1/2}.
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Soundararajan’s Conjecture (1998) (horizontal distribution):

#{σ + it : σ ≤ 1
2 +

c
logT ,0 ≤ t ≤ T ,ζ ′(σ + it) = 0}

#{σ + it : 0 ≤ t ≤ T ,ζ ′(σ + it) = 0}

T→∞−−−→ ρ(c) =


0 if c ≤ 0
∈ (0,1) if c > 0
→ 1 if c → ∞

Correspondingly (radial distribution): logT above correspond to N
below,

E[#{z : Λ′
N(z) = 0,1 ≥ |z| ≥ 1− c

N }]
N

N→∞−−−→ ρ(c).
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A question proposed by Brian Conrey
Jessen’s formula:

1
2π

∫ 2π

0
log |Λ′

N(re
iθ )|dθ − log |Λ′

N(0)|=
∫ r

0

nN(t)
t

dt ,

where nN(r) be the number of zeros of Λ′
N(z) inside the disc of radius

r centered at the origin.
By the translation-invariance of the Haar measure

E[log |Λ′
N(re

iθ )|] (independent of θ)

we have∫ r

0

E[nN(t)]
t

dt = E[log |Λ′
N(r)|]−E[log |Λ′

N(0)|]

=
d
ds

E[|Λ′
N(r)|

s]
∣∣∣
s=0

− d
ds

E[|Λ′
N(0)|

s]
∣∣∣
s=0

.

So this is one motivation to study

E[|Λ′
N(r)|

s].

9 / 44



Another background: A connection to the moments of
the Riemann zeta function on the critical line

Keating-Snaith’s work and conjecture (2000):

gs := lim
N→∞

1
Ns2 E[|ΛN(1)|2s] =

G2(s+1)
G(2s+1)

for Re(s)>−1/2,

where G(s) is the Barnes G-function.
Keating-Snaith’s Conjecture

1
T

∫ T

0
|ζ (1

2
+ it)|2sdt ∼ asgs(logT )s2

, T → ∞.

In number theory, g1 = 1,g2 = 2 and conjectured g3 = 42,g4 = 24024.
This coincides with G2(s+1)

G(2s+1) with s = 1,2,3,4.

More evidence was shown in the work on a “hybrid" representation of
the Riemann zeta function by Gonek, Hughes and Keating (2007).

Here as is the arithmetic factor

as = ∏
p

(
1− 1

p

)s2
∞

∑
m=0

(
Γ(m+s)
m! ·Γ(s)

)2

p−m.
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Hughes’ conjecture (2001):

1
T

∫ T

0
|ζ ′(

1
2
+ it)|2sdt ∼ asbs(logT )s2+2s, T → ∞

where bs := lim
N→∞

1
Ns2+2s

E[|Λ′
N(1)|

2s]

Hughes (2001): derived an expression for bs

Conrey, Rubinstein, and Snaith (2006): gave an expression for bs
in terms of a Hankel determinant
Forrester and Witte (2006): established a connection of bs to a
solution of σ -Painlevé III′

Assiotis, Keating and Warren (2022): proved the existence of bs
for noninteger and real s, and gave a probabilistic representation
of bs

· · · · · ·
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Question 1: What is about

E[|ΛN(z)|2s] and E[|Λ′
N(z)|

2s]

when |z|< 1?

Question 2: Is there a connection between them and Number theory,
specifically

lim
T→∞

1
T

∫ T

1
|ζ ′(σ + it)|2sdt for σ > 1/2?

Forrester and Keating (2004): for |z|< 1,

lim
N→∞

E[|ΛN(z)|2s] =
1

(1−|z|2)s2 .

Our focus is on the study of

E[|Λ′
N(z)|

2s].
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2. Main results
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Global regime

Theorem 1

For any fixed z with |z|< 1 and any s ∈ C with Re(s)>−1, we have

lim
N→∞

E
(
|Λ′

N(z)|
2s
)
=

e−s2|z|2Γ(s+1)
(1−|z|2)s2+2s 1F1(s+1,1;s2|z|2)

where 1F1(a,b;z) is the confluent hypergeometric function of the first
kind given by

1F1(a,b;z) =
∞

∑
k=0

a(k)

b(k)
zk

k !
,

and a(k) = Γ(a+k)/Γ(a).

Ref: N Simm and F Wei, On moments of the derivative of CUE characteristic
polynomials and the Riemann zeta function, arXiv:2409.03687, 2024.
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An application to the radial distribution of zeros of
Λ′N(z)

Corollary

Let nN(r) be the number of zeros of Λ′
N(z) inside the disc of radius r

centered at the origin. Then uniformly with respect to r on any closed
subset of [0,1), we have

lim
N→∞

∫ r

0

E(nN(t))
t

dt =− log(1− r2)

and

lim
N→∞

E(nN(r)) =
2r2

1− r2 .

From the above Corollary, we also give a limit function for the radial
density of the zeros of Λ′

N(z). Specifically, we have that

lim
N→∞

d
dr

E(nN(r)) =
d
dr

(
2r2

1− r2 ) =
4r

(1− r2)2 .

This provides an alternative method to re-obtain Mezzadri’s result [J.
Phys. A, 36(12):2945-2962, 2003].
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A connection to the moments of the derivatives of the
Riemann zeta function off the critical line

Recall

Random Matrix Theory Number Theory

|z|= 1 E[|ΛN(z)|2s] 1
T
∫ T

0 |ζ (1
2 + it)|2sdt

∼ gsNs2 ∼ asgs(logT )s2

|z|= 1 E[|Λ′
N(z)|

2s] 1
T
∫ T

0 |ζ ′(1
2 + it)|2sdt

∼ bsNs2+2s ∼ asbs(logT )s2+2s

Here

as = ∏
p

(
1− 1

p

)s2
∞

∑
m=0

(
Γ(m+s)
m! ·Γ(s)

)2

p−m.
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Random Matrix Theory Number Theory

|z|< 1 limN→∞E[|ΛN(z)|2s] limT→∞
1
T
∫ T

0 |ζ (σ + it)|2sdt

σ > 1
2 =

1
(1−|z|2)s2 ∼?

|z|< 1 limN→∞E[|Λ′
N(z)|

2s] limT→∞
1
T
∫ T

0 |ζ ′(σ + it)|2sdt

σ > 1
2 =

ds

(1−|z|2)s2+2s
∼?
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Hardy and Littlewood(1923): for σ > 1
2 ,

lim
T→∞

1
T

∫ T

0
|ζ (σ + it)|2sdt

compute s = 1,2.

Titchmarsh: Assume the truth of the Lindelöf hypothesis (i.e.,
|ζ (1

2 + it)|= O(|t |ε) for any ε > 0), for any s ∈ R,

lim
T→∞

1
T

∫ T

0
|ζ (σ + it)|2sdt ∼ as

(2σ −1)s2 , σ → 1
2
.
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Random Matrix Theory Number Theory

|z|< 1 limN→∞E[|ΛN(z)|2s] limT→∞
1
T
∫ T

0 |ζ (σ + it)|2sdt

σ > 1
2 =

1
(1−|z|2)s2 ∼ as

(2σ −1)s2 , σ → 1
2

Conjecture:

|z|< 1 limN→∞E[|Λ′
N(z)|

2s] limT→∞
1
T
∫ T

0 |ζ ′(σ + it)|2sdt

σ > 1
2 =

ds

(1−|z|2)s2+2s
∼ asds

(2σ −1)s2+2s
, σ → 1

2

Theorem: Assume the truth of the Lindelöf hypothesis, the
Conjecture holds for positive integer s.

We also compute s = 1,2 unconditionally.
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Microscopic regime

Theorem 3 (for finite matrix size N)

We have the following exact formula, valid for any z ∈ C and any
positive integers N,s,

E[|Λ′
N(z)|

2s] = ∑
λ ,µ∈Ys

fλ fµ
λ !µ!

det

{
(uλi+s−iK (λi+s−i)

N (u))(µj+s−j)
}s

i ,j=1

where u = |z|2 and

KN(u) =
N+s−1

∑
j=0

uj .

Here
Yn: the set of partitions λ satisfying |λ |= n.
fλ : the number of standard Young tableaux of type λ ,

fλ =
|λ |!

∏(i ,j)∈λ h(i , j)
.

h(i , j): the hook length of (i , j).
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Theorem 4 (Microscopic limit)

Let |z|2 = 1− c
N for c ∈ R fixed. In particular, the case |z|= 1

corresponding to c = 0 is allowed. Then for any positive integer s, as
N → ∞ we have

E[|Λ′
N(z)|

2s]∼ Ns2+2s
∑

λ ,µ∈Ys

fλ fµ
λ !µ!

det
(∫ 1

0
xλi+µj+2s−i−je−cxdx

)s

i ,j=1

We also obtain the equivalent expression, as N → ∞,

E(|Λ′
N(z)|

2s)∼ Ns2+2s ∂ 2s

∂vs∂ws det
{

∂ i+j−2Fc(v ,w)

∂v i−1∂w j−1

}s

i ,j=1

∣∣∣∣
v=w=0

,

where

Fc(v ,w) =
∫ 1

0
J0(2

√
vx)J0(2

√
wx)e−cxdx ,

and J0 is the Bessel function of the first kind. Furthermore, the
leading terms on the right-hand sides of the above asymptotics are
strictly positive.
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Commented by Bothner, the expression of Fc can be recognised as a
particular case of the finite temperature Bessel kernel. When c = 0,
this is exactly the Bessel kernel.

Commented by Akemann, the expression of Fc has appeared in the
RMT application to QCD (that is, Quantum Chromodynamics) with
imaginary chemical potential.
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3. Proof Sketch of the Main Results
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Approaches to Theorem 1

Step 1: Prove the following convergence for s ∈ C with Re(s)>−1,

lim
N→∞

E(|Λ′
N(z)|

2s) = E(|Λ′(z)|2s),

uniformly holds for any closed subset of {z : |z|< 1}, where

Λ(z) = eG(z) = e∑
∞
k=1

Nk√
k

zk

and {Nk}M
k=1 are i.i.d. standard complex normal random variables

with
{Tr(U−k )}M

k=1
d−→ {Nk}M

k=1, N → ∞,

implied by the strong Szegö limit theorem for Toeplitz determinants.

Step 2: Compute E(|Λ′(z)|2s).
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Sketch of the proof of Step 1 for Theorem 1

It follows from the the following result on the uniform integrability of
{|ΛN(z)|2s}N .

Lemma (Uniform integrability)

Assume that s ∈ C with Re(s)>−1. Consider the quantity

XN = |Λ′
N(z)|

2s.

Then for any δ > 0 fixed, |z|< 1−δ and for ε > 0 small enough and
for N sufficiently large, there exists a constant C > 0 independent of
N and z such that

E(|XN |1+ε)< C.
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Proposition (Bounds on negative moments)

For any a with 0 ≤ a < 2, let r = |z|< 1 and N > 4. Then there is a
constant C depending only on a and r such that

E(|Λ′
N(r)|

−a)≤ C.

By Hölder’s inequality,

E(|Λ′
N(r)|

−a)≤ E

(∣∣∣∣Λ′
N(r)

ΛN(r)

∣∣∣∣−aq
)1/q

E
(
|ΛN(r)|−aℓ

)1/ℓ

where q = ℓ
ℓ−1 > 1 and we choose ℓ large enough such that aq < 2.

Forrester and Keating: the boundness of E
(
|ΛN(r)|−aℓ).

It reduced to proving the following boundedness for 0 ≤ a < 2,

E

(∣∣∣∣Λ′
N(r)

ΛN(r)

∣∣∣∣−a
)

≤ C.
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A linear statistics

Λ′
N(r)

ΛN(r)
=−

N

∑
j=1

f (θj),

where

f (θ) =
e−iθ

1− re−iθ
=

∞

∑
n=1

rn−1e−inθ .

By integrating by parts, it reduced to proving for 0 ≤ a < 2,∫ 1

0
y−a−1P

(∣∣∣∣Λ′
N(r)

ΛN(r)

∣∣∣∣< y
)

dy ≤ C

So it suffices to show

P
(∣∣∣∣Λ′

N(r)
ΛN(r)

∣∣∣∣< y
)
≤ Cy2.
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Proposition (Small deviations inequality (Halász,1977))

P
(∣∣∣∣Λ′

N(r)
ΛN(r)

∣∣∣∣< y
)

≤ y2
∫
|ξ1|<y−1

∫
|ξ2|<y−1

dξ1 dξ2

∣∣∣∣∣E
(

e
iξ1Re

(
Λ′N (r)
ΛN (r)

)
+iξ2Im

(
Λ′N (r)
ΛN (r)

))∣∣∣∣∣ ,
Split the above integral over three regions:

R1 = {(ξ1,ξ2) : |ξ1|+ |ξ2|< N}
R2 = {(ξ1,ξ2) : N ≤ |ξ1|+ |ξ2|< N8}
R3 = {(ξ1,ξ2) : |ξ1|+ |ξ2|> N8}
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Estimates on the regions R1, R2 and R3.

For (ξ1,ξ2) ∈ R1 ∪R2,

Johansson(1997): Change of variables method + the inequality
version of the strong Szegö limit theorem as follows,

E[e∑
N
j=1 g(θj )]≤ eNĝ0+∑k≥1 k |ĝk |2

for a real-valued function g(θ).

Lemma

Let (ξ1,ξ2) ∈ R1. There is a constant c > 0 depending only on r such
that ∣∣∣∣∣E

(
e
iξ1Re

(
Λ′N (r)
ΛN (r)

)
+iξ2Im

(
Λ′N (r)
ΛN (r)

))∣∣∣∣∣≤ e−cξ 2
1 −cξ 2

2 .

Let (ξ1,ξ2) ∈ R2, we have∣∣∣∣∣E
(

e
iξ1Re

(
Λ′N (r)
ΛN (r)

)
+iξ2Im

(
Λ′N (r)
ΛN (r)

))∣∣∣∣∣≤ e−cN2
.
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For (ξ1,ξ2) ∈ R3,

A Toeplitz determinant representation∣∣∣∣∣E
(

e
iξ1Re

(
Λ′N (r)
ΛN (r)

)
+iξ2Im

(
Λ′N (r)
ΛN (r)

))∣∣∣∣∣= det
{

ĥj−k

}N−1

j ,k=0

By Hadamard’s inequality, the above

≤
N

∏
j=1

(
N

∑
k=1

|ĥj−k |2
) 1

2

.

Then apply the stationary phase approximation to ĥk .

Lemma

Let (ξ1,ξ2) ∈ R3.Then there is a constant C > 0 depending only on r
such that for all N we have∣∣∣∣∣E

(
e
iξ1Re

(
Λ′N (r)
ΛN (r)

)
+iξ2Im

(
Λ′N (r)
ΛN (r)

))∣∣∣∣∣≤ CNN−N/2(|ξ1|+ |ξ2|)−N/4.
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Proof sketch of Step 2 in the approach to Theorem 1

We now compute E(|Λ′(z)|2s) for Re(s)>−1.

Recall that

Λ′(z) = G′(z)eG(z),

where

G(z) =
∞

∑
k=1

Nk√
k

zk .

and

G′(z) =
∞

∑
k=1

√
kNk zk−1
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About the multivariate complex Gaussian vector (G(z),G′(Z )):

The mean vector and the relation matrix are 0.

The covariance matrix is

Γ =

 E(|G(z)|2) E(G(z)G′(z))

E(G(z)G′(z)) E(|G′(z)|2)



=

− log(1−|z|2) z
1−|z|2

z
1−|z|2

1
(1−|z|2)2


The joint density function

f (w1,w2) =
1

π2 det(Γ)
exp
(
−wTΓ−1w

)
with w = (w1,w2)

T .
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E(|Λ′(z)|2s) =
∫
C

d2w2

∫
C

d2w1 |w2|2s esw1+sw1 f (w1,w2).

We first do the integral with respect to w1 and then do the integral with
respect to w2. It is then reduced to computing the following integral

1
π

∫
C

d2w2|w2|2se−|w2|2+szw2+szw2

with z =
Γ1,2√
Γ2,2

. Expand inside the exponential, it is

∞

∑
k1=0

∞

∑
k2=0

(sz)k1(sz)k2

(k1)!(k2)!

1
π

∫
C

d2w2|w2|2se−|w2|2(w2)
k1(w2)

k2

=
∞

∑
k1=0

∞

∑
k2=0

(sz)k1(sz)k2

(k1)!(k2)!
δk1,k2Γ

(
s+

k1 +k2

2
+1
)

=
∞

∑
k=0

Γ(s+k +1)
(k !)2 s2k |z|2k

= Γ(s+1)1F1(s+1,1;s2|z|2).
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Sketch the proof in the approach to Theorems 3 and 4

Theorem (Akemann and Vernizzi’00)

For s ∈ N, the average of a product of 2s characteristic polynomials is

E

[
s

∏
j=1

det(I −zjU)det(I −wjU∗)

]
=

det

{
∑

N+s−1
l=0 (ziwj)

l
}s

i ,j=1

∏1≤i<j≤s(zj −zi)∏1≤i<j≤s(wj −wi)
.

E
[
|Λ′

N(z)|
2s
]
=

s

∏
j=1

∂

∂zj

∂

∂wj
E

[
s

∏
j=1

det(I −zjU)det(I −wjU∗)

]∣∣∣∣∣
z=w=|z|

.
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Our result
Proposition (A proposition on the merge process)

Let n ≥ 1 be an integer. Let f (x1, . . . ,xn) be a multivariate
anti-symmetric polynomial, that is, for any permutation σ of
{1,2, . . . ,n},

f (xσ(1), . . . ,xσ(n)) = sign(σ)f (x1, . . . ,xn).

Then

n

∏
i=1

∂

∂xi

f (x1, . . . ,xn)

∏1≤i<j≤n(xi −xj)

∣∣∣
x1=···=xn=x

= ∑
λ∈Yn

fλ
∏

n
i=1(λi +n− i)!

n

∏
i=1

∂ λi+n−i

∂xλi+n−i
i

f (x1, . . . ,xn)
∣∣∣
x1=···=xn=x

.

Recall: Yn: the set of partitions λ satisfying |λ |= n.
fλ : the number of standard Young tableaux of type λ ,

fλ =
|λ |!

∏(i ,j)∈λ h(i , j)
.

h(i , j): the hook length of (i , j). 35 / 44



Note that

KN(u) =
1−uN+s

1−u
= (N +s)

∫ 1

0
(1−x(1−u))N+s−1dx .

Let u = 1− c
N . The leading coefficient of E[|Λ′

N(1− c
N )|2s] is

bs(c) := ∑
λ ,µ∈Ys

fλ fµ
λ !µ!

det

{∫ 1

0
x2s+λi−i+µj−je−cxdx

}s

i ,j=1
.

By the Andréief identity and using the Schur polynomials,

bs(c) =
1
s!

∫
[0,1]s

(
∑

λ∈Ys

fλ
λ !

sλ (x)

)2 s

∏
j=1

e−cxj∆( x)2dx.

By Schur positivity, bs(c)> 0.
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The known relation between the hook length and the Schur
polynomial evaluated at 1s = (1, . . . ,1) with 1 appearing s times, in
the form

fλ =
sλ (1s)

λ !

s

∏
j=0

j!.

Then the sum in bs(c) is

∑
λ∈Ys

fλ
λ !

sλ (x) =

(
s

∏
j=0

j!

)
(−1)s

s!
∂ s

∂vs ∑
λ ,l(λ )≤s

sλ (1s)

(λ !)2 sλ (x)(−v)|λ |
∣∣∣∣
v=0

,

We now replace sλ (1s)(−v)|λ | with sλ (−v) where v consists of s new
variables. Due to homogeneity of the Schur polynomials, we then
recover the desired quantity after taking v = (v ,v , . . . ,v) in the end.
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Using the Cauchy-Binet identity, we have

∑
λ ,l(λ )≤s

sλ (x)sλ (v)
(λ !)2 =

det

{
∑

∞

ℓ=0
(−xi vj )

ℓ

(ℓ!)2

}s

i ,j=1

∆(x)∆(v)
,

The function inside the above determinant is the series definition of
the Bessel function of the first kind

J0(2
√

x) =
∞

∑
j=0

(−x)j

(j!)2 .

Recently, Akemann, Kieburg et al. a Borel transformation of the inital CUE kernel to
obtain the Bessel function alternatively.
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Further questions
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A question related to Painlevé equations
Without taking the derivative,

E[|ΛN(z)|2s]

for |z|= 1, keating and Snaith(2000), Selberg integral;

for |z|< 1, for fixed matrix size N,

Deaño and Simm (2022):

E[|ΛN(z)|2s] Re(s)>−1

=
1

(2πi)NN!

∫
{z:|z|=1}N

N

∏
j=1

dwj

wj
w−s/2

j |1+wj |s(1+z2wj)
s

∏
1≤i<j≤N

|wi −wj |2

Forrester and Witte(2004):

E[|ΛN(z)|2s] = (1−|z|2)−s2
exp

−
∫ 1

1−|z|2

σ
(VI)
N,s (t)−c2

1 t + c2
1+c2

2
2

t(1− t)
dt

 ,

where σ
(VI)
N,s (t) satisfies the Jimbo-Miwa-Okamoto σ -form of the

Painlevé VI equation, c1 = s+N/2 and c2 = N/2.
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Actually, for integer s,

E[|ΛN(z)|2s] = (1−|z|2)−s2
P(t (0,N)

max ≤ 1−|z|2),

the largest eigenvalue distribution in the Jacobi ensemble.

Microscopic limit for |z|2 = 1− c
N with c > 0,

Rewrite E[|ΛN(z)|2s] as a Toeplitz determinant,

zsN det

{
1

2π

∫ 2π

0
m(eiθ ,z)ei(k−j)θ dθ

}N−1

k ,j=0

with symbol

m(eiθ ,z) = (eiθ −z)s
(

eiθ − 1
z

)s

e−iθse−iπs.
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Claeys, Its and Krasovsky(2011), Forrester and Witte(2002),

E[|ΛN(z)|2s]∼ (N/c)s2
exp

(
−
∫

∞

c

σ
(V)
s (t)

t
dt

)
, Re(s)>−1

2

with |z|2 = 1− c
N , where σ

(V)
s (t) satisfies the Jimbo-Miwa-Okamoto

σ -form of the Painlevé V equation

(tσ ′′)2 − [σ − tσ ′+2(σ ′)2 +2sσ
′]2 +(4σ

′)2(s+σ
′)2 = 0.
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Summarize the above,

|z|< 1 for finite matrix size N Microscopic limit

E[|ΛN(z)|2s] σ -Painlevé VI σ -Painlevé V

E[|Λ′
N(z)|

2s] ? ?

It is known by Forrester and Witte (2006), Basor, Bleher, Buckingham,
Grava, Its, Its, and Keating (2019), Keating and Wei (2023), Assoitis,
Gunes, Keating and Wei (2024),

|z|= 1 for finite matrix size N large N-limit

E[|Λ′
N(z)|

2s] σ -Painlevé V σ -Painlevé III’

E[|Λ(n)
N (z)|2s] the derivatives of the derivatives of

n ≥ 2 σ -Painlevé V σ -Painlevé III’
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Thank you and

Happy Birthday, Peter!
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