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1. Some background on connections between number
theory and random matrix theory
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Riemann zeta function

When Re(s)> 1,

Pole: s =1
Functional equation:

o)) = w0921 St )

Trivial zeros: s=-2,—4,-6,-8,---
Non-trivial zeros: 0 < Re(sp) < 1.

Riemann Hypothesis: Vn, Re(s,) = 1/2, i.e., s, = % +it, for t, € R.
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Connections with random matrix theory

o
og —-.

—_n
Set wp, = o oy

Conjecture (Montgomery, 1972)
Let f(x) be an integrable function with a compact support,

i X =)= [0 (1- (762

where 6(x) is the Dirac delta function such that [~ f(x)6(x)dx = f(0).

2

n 6(x)> dx,

v

Montgomery’s conjecture can be proved for a restricted class of test
functions f(x), e.g., if the Fourier transform of f(x) is supported on
[_1 ) 1]
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Denote the eigenvalues of an N x N unitary matrix A by e'®»(4) and

N
set ¢n(A) = gen(A)-

Theorem (CUE Pair Correlation - Dyson, 1963)

. 1
i o N (9n(A)~om(A))dAN

N—eo n£m<N
_ /:’O () (1 B (sin7(r7;x))2+5(x)> ax.

The n-point correlation function

1 . . -
R,(Q) = N#{h,...,jng N distinct = (wj, —w,,---,w;,_, —wj,) € Q}

forabox Q c R 1.
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Summarize the above,
Let A € U(N) be taken from the Circular Unitary Ensemble (CUE) of
random matrices.

The characteristic polynomial of A:

An(Z) :=det(/—zA") = IAJ[“ — zg~6n),

n=1

where e'% ... ' are the eigenvalues of A.

BT = [ W) GVhaar EIAV(IT = [ 1N(2) Ve

The distribution of zeros of Ay model - The distribution of zeros of ¢

The distribution of zeros of A), ™%, The distribution of zeros of ¢’

A.Speiser (1934):
RH < {’(s) has no nonreal zeros in the region {c +it: o < 1/2}.
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Soundararajan’s Conjecture (1998) (horizontal distribution):

#{o+it:o<3+Sr,0<t<T,{(c+it) =0}
#{oc+it:0<t<T,{'(c+it)=0}

0 ifc<O0
o= ple)={e(0,1) ifc>0
— 1 if c— oo

Correspondingly (radial distribution): log T above correspond to N
below,

E[#{z: Ny(2) =012 1212 1- £}  now
B R p(c).
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A question proposed by Brian Conrey

Jessen’s formula:

1 2r / i0 I _ rnN(t)
5/0 log |\ (re )|d9—|og|/\N(0)|—/0 S,

where ny(r) be the number of zeros of A (z) inside the disc of radius
r centered at the origin.

By the translation-invariance of the Haar measure

E[log|Nj(re®)]]  (independent of )

we have

[/ B0
0

n E[log|An(r)[] - E[log|[An(0)]]

d / S d !/ )
@EW\N("N ] <=0 @EH/\N(ON ] s0
So this is one motivation to study

E[[AN(N)I]-
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Another background: A connection to the moments of

the Riemann zeta function on the critical line

Keating-Snaith’s work and conjecture (2000):
G?(s+1)
G(2s+1)
where G(s) is the Barnes G-function.
Keating-Snaith’s Conjecture

. 1
ge = im —ElAN(1)I¥] = for Re(s) > —1/2,

1 /T 1
7 [ 16 +inPoat ~ ags(log T, T

In number theory, g1 = 1,9> = 2 and conjectured g; = 42, g4 = 24024.
2
This coincides with G2} with s =1,2,3,4.

More evidence was shown in the work on a “hybrid" representation of
the Riemann zeta function by Gonek, Hughes and Keating (2007).

Here as is the arithmetic factor
2
1\% & r(ers))2 _
as = 1—) ( oM.
s I;,I( p n;o m!-T(s)
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Hughes’ conjecture (2001):
T oA
1[0 + i)t~ asbollog TI**2, T o
0

where bs := lim E[|AN(1)[%]

N—seo \JS?+25
@ Hughes (2001): derived an expression for bs

@ Conrey, Rubinstein, and Snaith (2006): gave an expression for bs
in terms of a Hankel determinant

@ Forrester and Witte (2006): established a connection of bs to a
solution of o-Painlevé Il

@ Assiotis, Keating and Warren (2022): proved the existence of bg
for noninteger and real s, and gave a probabilistic representation
of bs
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Question 1: What is about
E[|An(2)1%] and E[|Ay(2)[2°]
when |z| <17
Question 2: Is there a connection between them and Number theory,

specifically

;
lim lT/1 |C'(o+it)|?%dt for o >1/2?

T—oo
Forrester and Keating (2004): for |z| < 1,

1

. 2sy .
A EIM2 = s

Our focus is on the study of

E[IAn(2)[?].
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2. Main results

o>
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Global regime

For any fixed z with |z| < 1 and any s € C withRe(s) > —1, we have

im B (1Ny(2)/2°) = e ) £ (o 1,1;62(22)
N N - (1 7|Z|2)32+23 171 Bt
where 1 Fy(a, b; z) is the confluent hypergeometric function of the first

kind given by
= £l 2
1Fi(ab;2)= ) o5

and ak) =r(a+k)/T(a).

Ref: N Simm and F Wei, On moments of the derivative of CUE characteristic
polynomials and the Riemann zeta function, arXiv:2409.03687, 2024.
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An application to the radial distribution of zeros of

N(Z)

Let ny(r) be the number of zeros of Ny(z) inside the disc of radius r
centered at the origin. Then uniformly with respect to r on any closed
subset of [0,1), we have

lim rL(nN(t))dt = —log(1—r?)

N—o JO t

and )
) 2r

,JI'QLE(”N(")) =1

From the above Corollary, we also give a limit function for the radial
density of the zeros of Ay(z). Specifically, we have that
. d d, 2r? 4r
W g )= G (TR) = e
This provides an alternative method to re-obtain Mezzadri’s result [J.
Phys. A, 36(12):2945-2962, 2003].
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A connection to the moments of the derivatives of the

Riemann zeta function off the critical line

Recall
Random Matrix Theory Number Theory
2| =1 E[[An(2)[%] L0185 +it)2sat
~ gsN** ~ a5gs(log T)*
2| =1 E[[Ay(2)P] TJo 183 +it)Poat
~ bSN32+2s ~ asbs(log T)sz+25
Here

() £

D

e
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Random Matrix Theory

Number Theory

Zl <1 | imyoeElAN@)PS] | limrowd J] (o +it)[2Sat
1
1
o> 5 = T o o ~7?
2 (1-1z]»)
/<1 | limyoeEA(2)2] | limrow 3 1E (o +it)2Sdt
d
1 S
o > 5 = ~7
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Hardy and Littlewood(1923): for ¢ > 7,

. 1 T 4\ |28
lim 7/0 (o +it)[2Sdt

T—oo
compute s=1,2.

Tltchmarsh Assume the truth of the Lindeldf hypothesis (i.e.,
|C( +it)| = O(|t|?) for any € > 0), for any s € R,

1 osyp., 9 1
Jim T/ lorinfedtn s ooy
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Random Matrix Theory Number Theory

2 <1 | limaoeElANZ)PS] | limroe 1 fo 1S (o + i)t
c>3 -1 a1

° (1—z2)% (20 —1)* 2

Conijecture:
2| <1 limn e E[| AN (2)[25] limT e+ Jo 18/ (0 +it)[?0t
d asd.

1 - s ~ 575 _

0~z (1 —|z[2)5*+2s (26 —1)s*+2s’ °—73

Theorem: Assume the truth of the Lindeléf hypothesis, the

Conjecture holds for positive integer s.

We also compute s = 1,2 unconditionally.
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Microscopic regime

Theorem 3 (for finite matrix size N)

We have the following exact formula, valid for any z € C and any
positive integers N, s,

, s
IE[|/\ (2) |2s] _ Z ?k Al d t{ /l+siKIEI/l,+s—/)(u))(”j+sj)}
A HEYS i j=1
where u = |z|? and
N+s—1

-y
j=0

.

Here

Y,: the set of partitions A satisfying |A| = n.

f,: the number of standard Young tableaux of type A,
A

i jyen h(i.j)

h(i,j): the hook length of (i,j).

L=
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Theorem 4 (Microscopic limit)

Let|z|2=1— § for c € R fixed. In particular, the case |z| = 1
corresponding to ¢ = 0 is allowed. Then for any positive integer s, as
N — o we have

fifu
Alu!

E[|Ay(2)[25] ~ NH25 Y

U dpes—ioj s
det(/ XMt S*’*fefc"dx)
AueYs 0

ij=1
We also obtain the equivalent expression, as N — o,

038 M2 F,(v,w)) ®
E A/ 2s ~ N52+2S _ C '7
(| N(z)l ) ovSows det dvi-1owi—1 ijt

b
v=w=0

where ]
Fo(v,w) = /0 Jo(2v/VX) o (2v/Wx) e~ dx,
and Jy is the Bessel function of the first kind. Furthermore, the

leading terms on the right-hand sides of the above asymptotics are
strictly positive.

21/44



Commented by Bothner, the expression of F. can be recognised as a
particular case of the finite temperature Bessel kernel. When ¢ =0,
this is exactly the Bessel kernel.

Commented by Akemann, the expression of F; has appeared in the
RMT application to QCD (that is, Quantum Chromodynamics) with
imaginary chemical potential.
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3. Proof Sketch of the Main Results
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Approaches to Theorem 1

Step 1: Prove the following convergence for s € C with Re(s) > —1,
lim E(|Ay(2)[2%) = E(IN(2)[%°),
N—o0
uniformly holds for any closed subset of {z: |z| < 1}, where
- M
A(z) = e8@) — ¥kt i
and {4 }M_, are i.i.d. standard complex normal random variables

with
(Te(U MM LA, N,

implied by the strong Szegd limit theorem for Toeplitz determinants.

Step 2: Compute E(|A'(2)[?9).
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Sketch of the proof of Step 1 for Theorem 1

It follows from the the following result on the uniform integrability of
{IAn(2)[*}n-

Lemma (Uniform integrability)

Assume that s € C with Re(s) > —1. Consider the quantity
Xn = [Ay(2)%.

Then for any 6 > 0 fixed, |z| < 1— 6 and for € > 0 small enough and
for N sufficiently large, there exists a constant C > 0 independent of
N and z such that

E(| Xy *¢) < C.
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Proposition (Bounds on negative moments)

Foranyawith0<a<2,letr=|z| <1andN > 4. Then there is a
constant C depending only on a and r such that

E(|An(r) %) < C.

By Hdlder’s inequality,

Np(r)
An(r)

aq) 1/¢7IE <|/\N(,—)|*a€> 1/¢

where q = [ 7 > 1 and we choose / large enough such that aq < 2.

E(|AN(N)I™) SE(

Forrester and Keating: the boundness of E (|An(r)|[~#).

It reduced to proving the following boundedness for 0 < a < 2,
Ny(ry|~2
E||-N <C.
( An(r) -
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A linear statistics

where

f(0) = eiie - 1 —me
( ) - rza——le }E:

By integrating by parts, it reduced to proving for 0 < a< 2,

[ (] s) =

So it suffices to show

< y> < Cy?.
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Proposition (Small deviations inequality (Haldsz,1977))

A (1)
An(r)

*(Jml <)
N - Ny(r)
y2/ / d§1 déZ E ‘51Re</\N(r >+1521 < N(r))
&rl<y=1 JIgo| <y

Split the above integral over three regions:

Ry = {(&1,82) : [&1] +1E2] < N}
Ro= {(&,&): N <& |+ |&| < N8}
Rs= {(&1.&): |&]+ & > NBY
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Estimates on the regions Ry, R> and Rs.
For (§1,82) € R1UR,

Johansson(1997): Change of variables method + the inequality
version of the strong Szeg6 limit theorem as follows,

E[eZ/Nﬂ 9(9/')] < gNGo+Ek>1 K|gx |2

for a real-valued function g(0).

Let (&1,&2) € Ry. There is a constant ¢ > 0 depending only on r such
that
N N
() <n(28)
Let (&1,&2) € Ro, we have

()

< e o

< éa—-C,VZ

e R =
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For (&1,82) € R,
A Toeplitz determinant representation

)

Jk=0

By Hadamard’s inequality, the above
N[N 2
<H<Z h,-k|2> :
j=1 \k=1

Then apply the stationary phase approximation to P

Let (&1,&5) € Rs.Then there is a constant C > 0 depending only on r
such that for all N we have

< CVNN2(1& | +1E2l) M.

B ( 1§1Rc< (r§>+‘§zlm</\N8>>

) = — = =
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Proof sketch of Step 2 in the approach to Theorem 1

We now compute E(|\'(2)[25) for Re(s) > —1.

Recall that
N(z) = G(z)ef?
where
= M
G(z) = —z"
(2) k; Tk
and
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About the multivariate complex Gaussian vector (G(z), G'(Z)):

@ The mean vector and the relation matrix are 0.

@ The covariance matrix is

E(IG(2)PP)  E(G(2)G(2))

E(G(2)G(2)) E(G(2)P)

—log(1-12%) £

1-|z2

z 1
1-|z2 (1122

@ The joint density function

f(W1,W2)= WT|_71W)

1 . (
v (-
22det(r) © P

with w = (wq, wa)".
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IE(V\/(Z)|25):/(C612W2/(C<7'2W1 W22 €S f(wy, wp).

We first do the integral with respect to wy and then do the integral with
respect to ws. It is then reduced to computing the following integral

1 Ciwel2 o
E/d2W2|W2\236 |Wo | +85ZWo+SZWo
C

withz:\;%.
o (s2)M(s2)k
=0kp=0 ( )I(k2)|

Expand inside the exponential, it is

_ 2 —
* [ el ool wy)fs ()

B (s2)k1 (sz)ke ki + k
B ZOKZZ (ki) kel (” ¥ 2“)
_ i [s+K 1) o

~ (k)2
=T(s+1)1Fi(s+1,1;8%|z]?).
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Sketch the proof in the approach to Theorems 3 and 4

Theorem (Akemann and Vernizzi’'00)
For s € N, the average of a product of 2s characteristic polynomials is
S

det { Z;\’*S L (z,-wj)’}
ij=1

[Mi<icj<s(Zi — 2)) [T1<icj<s(Wj — w;)

E Lﬁdet(lsz)det(l w,-u*)] -
j=1

=1

E[|/\’ |25} ﬁaiai Lndetl—z/U)det(l—mU*)]

z=w=|Z|
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Our result

Proposition (A proposition on the merge process)

Letn>1 be an integer. Let f(x1,...,Xn) be a multivariate
anti-symmetric polynomial, that is, for any permutation o of
{1,2,...,n},

f(Xo(1), -+ Xo(n)) = sign(c)f(x1, ..., Xn).
Then

Iﬂ[i f(X1,---,Xn)
IX 1<1<j<n(Xi - X;)
n a/l,v+n7i

Xy =-=Xp=X

= f(X1,...,Xn)
Z;', 1 (A +n—/)l axf'*"” g P—

=X

Recall: Yj: the set of partitions A4 satisfying |[A| = n.
f,: the number of standard Young tableaux of type A,

_ A
i jyen h(i.j)
h(i,j): the hook length of (i,j).

fi
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Note that

1— uN+s

() = ——;—=(N+s) /'1(1 —x(1— )M,

0
Let u=1—£. The leading coefficient of E[|A},(1 — %)FS] is

S

5 B [ )
ALEYs Alp i j=1

By the Andréief identity and using the Schur polynomials,

2 S
bs(c) = /[Oﬂs ( Z )) Ee‘CX/A( x)2adx

By Schur positivity, bs(c) >0
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The known relation between the hook length and the Schur
polynomial evaluated at 15 = (1,...,1) with 1 appearing s times, in

the form .
$i(1s) :
f/l = 2 jI__%jl

Then the sum in bs(c) is

Zﬁsﬂx)—@/!) i L W

(Y v=0

We now replace s; (15)(—v)*! with s; (—v) where v consists of s new
variables. Due to homogeneity of the Schur polynomials, we then
recover the desired quantity after taking v = (v, v,...,v) in the end.
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Using the Cauchy-Binet identity, we have

d X/V/)[ }S
53.(X)82.(v) _ . {Z[ S Py
aim<s (A2 A(X)A(V) ’

The function inside the above determinant is the series definition of
the Bessel function of the first kind

sizvx) =y L

Recently, Akemann, Kieburg et al. a Borel transformation of the inital CUE kernel to
obtain the Bessel function alternatively.
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Further questions

o>
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A question related to Painlevé equations

Without taking the derivative,

E[[An(2)[2°]
for |z| =1, keating and Snaith(2000), Selberg integral;
for |z| < 1, for fixed matrix size N,
Deafio and Simm (2022):
E[|An(2)?°] Re(s) > 1

1 . A s/2
- (27ti)NN| /{z\z\ 1}NI:1 W/ |1+W| (1—1—2 ij) H |w; —

1<i<j<N

Forrester and Witte(2004):

(VD) c?+c3

1 opng (D) —c2t+ 52

251 _ (1 _ |5|2\—5° _ N,s 1
E[[An(2)/?] = (1 - |2?) exp< A dt),

where o\'2)(t) satisfies the Jimbo-Miwa-Okamoto -form of the
Painlevé VI equation, ¢c; = s+ N/2 and ¢, = N/2.

2
Wi
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Actually, for integer s,

EllAN(2)P] = (1 - |2P) <P < 1-12%),
the largest eigenvalue distribution in the Jacobi ensemble.
Microscopic limit for |z|> =1 — & with ¢ >0,
Rewrite E[|An(2)|?9] as a Toeplitz determinant,

on ) ) ) N—-1
2N det { 1 / m(e‘e,z)e‘(k‘f)ede}
2n Jo k,j=0

with symbol

1 S
> o105 g—ins.

m(eievz) — (eie 72)5 <eiﬂ o r
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Claeys, Its and Krasovsky(2011), Forrester and Witte(2002),

\ - V)
EllAn(2)P°] ~ (N/c)* exp<— / "S,(”dt>7 Re(s) >~

with [z =1— %> where oév)(t) satisfies the Jimbo-Miwa-Okamoto

o-form of the Painlevé V equation

(t6")2 —[c —to' +2(0")2 +2506')2 + (46" )2(s+ ') = 0.

42/44



Summarize the above,

E[|AN(2)[%]

|z| <1 for finite matrix size N | Microscopic limit
E[|An(2)[29] o-Painlevé VI o-Painlevé V
? ?

It is known by Forrester and Witte (2006), Basor, Bleher, Buckingham,
Grava, Its, Its, and Keating (2019), Keating and Wei (2023), Assoitis,

Gunes, Keating and Wei (2024),

2| =1

for finite matrix size N

large N-limit

E[IAN(2)1%]

o-Painlevé V

o-Painlevé III

E[IA (2)[2°]

n>2

the derivatives of

o-Painlevé V

the derivatives of

o-Painlevé III
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Thank you and

Happy Birthday, Peter!
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