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Random unitary ensembles

Consider the random unitary ensemble

1
Zn

e−nTrV(M)dM, (1)

defined on n × n Hermitian matrices M.
The potential V is a real analytic function over R satisfying

lim
|x|→∞

V(x)
log(1 + x2)

= +∞.

It is well-known that the eigenvalues of M form a determinantal point
process characterized by the correlation kernel

Kn(x, y) := e−
n
2 (V(x)+V(y))

n−1∑
i=0

pi(x)pi(y).

When V(x) = x2

2 , this is the well-known Gaussian unitary ensemble (GUE).
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Eigenvalue distribution

The limiting mean density of eigenvalues are

lim
n→∞

1
n

Kn(x, x) = ρV (x).

dµV = ρV (x)dx is the unique equilibrium measure that minimizes the log-
arithmic energy functional

IV (µ) =

"
log

1
|x − y|

dµ(x)dµ(y) +

∫
V(x)dµ(x),

among all the probability measure µ on R.
Euler-Lagrange variational conditions: there exists a constant `V such that

2
∫

log |x − y|dµV (y) − V(x) + `V = 0, x ∈ supp(µV ), (2)

2
∫

log |x − y|dµV (y) − V(x) + `V ≤ 0, x ∈ R. (3)
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Classical universality classes

Generically, ρV (x) is positive in supp(µV ), and vanishes as a squared root
at the endpoints.

Soft-edge universality: let bV be the endpoint of supp(µV ), there exists a
constant cV such that

lim
n→∞

1
cVn2/3 Kn

(
bV +

u
cVn2/3 , bV +

v
cVn2/3

)
= KAi(u, v).

Bulk universality: for any x∗ such that ρV (x∗) > 0, the limiting correlation
kernel is the sine kernel

lim
n→∞

1
nρV (x∗)

Kn

(
x∗ +

u
nρV (x∗)

, x∗ +
v

nρV (x∗)

)
= Ksin(u, v).
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Non-standard universality classes

For general real analytic potentials V(x), there are three types of critical points:
Deift, Kriecherbauer and McLaughlin (JAT, 1998)

Kuijlaars and McLaughlin (CPAM, 2000)

Critical edge point: an endpoint x∗ of supp(µV ) where ρV (x) vanishes to
an order higher than square root:

ρV (x) ∼ |x − x∗|2k+ 1
2 , as x→ x∗, k ∈ N+.

Critical interior point: a point x∗ ∈ supp(µV ) where ρV (x) vanishes with
even order:

ρV (x) ∼ (x − x∗)2k, as x→ x∗, k ∈ N+.

Critical exterior point: a point x∗ ∈ R\supp(µV ) where equality is attained
in the variational condition (3).
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Kernels for non-standard universality classes

Critical edge point: the limit of the correlation kernel is built from func-
tions relevant to the Painlevé I hierarchy: Brézin, Marinar and Parisi (PLB, 1990)

Bowick and Brézin (PLB, 1991), Claeys and Vanlessen (CMP, 2007)

lim
n→∞

1
cVn2/(4k+3) Kn

(
bV +

u
cVn2/(4k+3) , bV +

v
cVn2/(4k+3)

)
= K(k)

PI
(u, v; x).

Critical interior point: the limit of the correlation kernel is built from
functions relevant to the Painlevé II hierarchy:

lim
n→∞

1
cVn1/(2k+1) Kn

(
x∗ +

u
cVn1/(2k+1) , x

∗ +
v

cVn1/(2k+1)

)
= K(k)

PII
(u, v; x).

For k = 1, this result was rigorously established. Bleher and Its (CPAM, 2003)

Claeys and Kuijlaars (CPAM, 2006)

Critical exterior point: finite size GUE kernels.
Bertola and Lee (CA, 2009), Claeys (IMRN, 2008), Mo (IMRN, 2008)
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Gap probability: soft edge

Let λn be the largest eigenvalue of M, then

lim
n→∞

Prob
(
cVn

2
3 (λn − bV ) < s

)
= det(I − KAi

s ),

where KAi
s is the trace-class operator acting on L2(s,∞) with the Airy kernel.

Tracy-Widom distribution: Tracy and Widom (CMP, 1994)

FTW(s) := det(I − KAi
s ) = exp

(
−

∫ ∞

s
(τ − s)y2

HM(τ)dτ
)
.

yHM(x) is the Hastings-McLeod solution to the Painlevé II (PII) equation

y′′(x) = xy(x) + 2y3(x),

with yHM(x) ∼
√
−x/2, x→ −∞ and yHM(x) ∼ Ai(x), x→ +∞.

Large gap asymptotics: Deift, Its and Krasovsky (CMP, 2008)

log FTW(s) =
s3

12
−

1
8

log(−s) +
1

24
log 2 + ζ′(−1) + O(|s|−3/2),

as s→ −∞, where ζ(s) is the Riemann zeta-function.
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Gap probability: bulk

lim
n→∞

Prob
(
M has no eigenvalues in (x∗−

s
nρV (x∗)

, x∗+
s

nρV (x∗)
)
)

= det(I−Ksin
(−s,s)),

where Ksin
(−s,s) is the trace-class operator acting on L2(−s, s) with the sine kernel.

The sine-kernel determinant admits an explicit integral expression in terms of the
σ-form of the Painlevé V equation Jimbo, Miwa, Mori and Sato (Phys. D 1980)

det(I − Ksin
(−s,s)) = exp

(∫ s

0

σV (τ)
τ

dτ
)
,

where σV (x) is a special solution of the following equation

(xσ′′V )2 + 4
(
4σV − 4xσ′V − σ

′
V

2
)
(σV − xσ′V ) = 0, (4)

with σV (x) ∼ − 2x
π
, x→ 0+ and σV (x) ∼ −x2 − 1

4 , x→ +∞.

As s→ ∞, Krasovsky (IMRN 2004), Ehrhardt (CMP, 2006)

log det(I − Ksin
(−s,s)) = −

s2

2
−

1
4

log s +
1

12
log 2 + 3ζ′(−1) + O(s−1).
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Gap probability: more

Forrester-Chen-Eriksen-Tracy conjecture: Forrester (Nucl. Phys. B, 1993)
Chen, Eriksen and Tracy (J. Phys. A, 1995)

If the density of state behaves as |x−x∗|κ near a point x∗, then the probability E(s)
of emptiness of the (properly scaled) interval (x∗ − s, x∗ + s) behaves like

E(s) ∼ exp(−Cs2κ+2), s→ +∞.

The constant terms in the large gap asymptotics are difficult to derive.

The study of gap probability has a long history and many results have been ob-
tained in the literature.
P. J. Forrester, Asymptotics of spacing distributions 50 years later, Math. Sci. Res. Inst.
Publ., 65 Cambridge University Press, New York, 2014, 199–222.

During the past ten years, there are still exciting developments, for example,
gap probability on two large intervals; Fahs, Krasovsky, Maroudas
gap probability for thinned determinantal point processes;

Charlier, Claeys, D., Liu, Yao, Xu, Zhang
gap probability in 2D models; Byun, Charlier, Park
finite temperature deformation of Fredholm determinants;

Bothner, Cafasso, Claeys, Ruzza, Tarricone, Xu
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Critical edge point: higher-order analogues of the TW distribution

Let KPk
I

s be the trace-class operator acting on L2(s,∞) with the Pk
I kernel, then

det(I−KPk
I

s ) can be considered as the higher-order analogues of the Tracy-Widom
distribution. It can be explicitly expressed in terms of a special smooth solution
to the Painlevé II hierarchy. Claeys, Its and Krasovsky (CPAM, 2010)

As s→ −∞, we have

log det(I − KPk
I

s ) =
1

4(4k + 3)
α2

ks4k+3 +
αk

2(2k + 2)
xs2k+2 +

4k+1∑
m=2

am|s|m +
x2s
4

−
2k + 1

8
log |s| + C(k) + O(|s|−2),

where am are functions of x, t1, . . . , t2k−1 and vanish when t1 = . . . = t2k−1 = 0,

αk :=
2Γ

(
2k + 3

2

)
Γ (2k + 2) Γ

(
3
2

) , (5)

The s-independent constant C(k) is unknown except for k = 0:

det(I − KP0
I

s ) = FTW(2
2
3 s).
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Our result: large gap asymptotics

Theorem (D., Long, Xu, Yao and Zhang, arXiv:2501.12679)

For k = 1, 2, . . ., let KPk
I

s be the trace-class operator acting on L2(s,∞) with the kernel
K(k)(u, v; x) and define

FI(s; x) := log det(I − KPk
I

s ).

Then, we have, as s→ −∞,

FI(s; x) =
1

4(4k + 3)
α2

ks4k+3 +
αk

2(2k + 2)
xs2k+2 +

x2s
4
−

1
8

log
∣∣∣αks2k+1 + x

∣∣∣
−Ih(x) +

(2k + 1)2

2(2k + 2)(4k + 3)
α
− 1

2k+1
k · x

4k+3
2k+1 +

k log(x2 + 1)
24(2k + 1)

+
log(2k + 1)

24
+

logαk

24(2k + 1)
+

1
24

log 2 + ζ′(−1) + O(|s|−ε0 ).
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Our result: large gap asymptotics

Theorem (Continued)

The above result is uniformly valid for x ∈
[
−c1|s|2k+1, αk |s|2k+1 − c2|s|

2k
3 +ε

]
with c1,

c2 being arbitrarily fixed real positive numbers and fixed ε ∈ (0, 4k
3 + 1), where ε0 =

min{ 16 , 2ε}. Here, the constant αk is defined in (5) and

Ih(x) := −
∫ x

−∞

[
hI(τ) − hI,asy(τ)

]
dτ =

∫ +∞

x

[
hI(τ) − hI,asy(τ)

]
dτ,

where hI(x) is the Hamiltonian associated with the special solution q(x) of the Painlevé
I hierarchy P2k

I in (6) and

hI,asy(x) :=
(2k + 1)
2(2k + 2)

α
− 1

2k+1
k · x

2k+2
2k+1 +

kx
12(2k + 1)(x2 + 1)

.
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The Painlevé I hierarchy

The m-th member of Pm
I is a nonlinear ordinary differential equation of

order 2m defined by

x +Lm(q) +

m−1∑
j=1

tjLj−1(q) = 0, t1, . . . , tm−1 ∈ R, (6)

where the operator L satisfies the Lenard recursion relation
d
dxLk+1(q) =

(
1
4

d3

dx3 − 2q d
dx − qx

)
Lk(q), k = 0, . . . ,m − 1,

L0(q) = −4q, Lj(0) = 0, j = 1, . . . ,m.

If m = 1, one recovers the Painlevé I equation qxx = 6q2 + x.
If m = 2, we have

qxxxx = 4x − 40q3 + 10q2
x + 20qqx − 16t1q.
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A special solution to the Painlevé I hierarchy

There exists a real and pole-free solution q(x) to each equation P2k
I with

the boundary condition Claeys (Phys. D, 2012)

q(x) =
1
2
α
− 1

2k+1
k x

1
2k+1 + O

(
|x|−

1
2k+1

)
, x→ ±∞.

The Hamiltonian hI(x) = hI(x, t1, . . . , t2k−1) is related to q(x) through the
relation dhI(x)/dx = q(x).

For P2
I , q(x) is called the tritronquée solution.

Grava, Kapaev and Klein (CA, 2015)

It is worth mentioning that the tritronquée solution for P2
I is essential to

describe the critical behaviors for the solutions of a large class of Hamilto-
nian PDEs. Dubrovin (2008)
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Gap probability near the critical interior point

Let KPk
II

s be the trace-class operator acting on L2(−s, s) with the Pk
II kernel. In the

first bulk critical case (k = 1), as s→ +∞ Bothner and Its (CMP, 2014)

ln det(I − KPII
s ) = −

2
3

s6 − s4x −
1
2

(sx)2 −
3
4

log s

+

∫ +∞

x
(τ − x)q2

HM(τ)dτ −
1
6

log 2 + 3ζ′(−1) + O(s−1).

An algebraic singularity | det M|2α with α > −1/2 can be introduced in the model.
If the critical interior point is located at the origin, we have the general PIIα kernel.

Claeys, Kuijlaars and Vanlessen (Ann. Math., 2008)

The large gap asymptotics for the general PIIα kernel were established in Xu and
D. (CMP, 2019). In addition, we get an explicit integral representation:

det(I − KPII
(−s,s))

= exp
(
−

∫ x

−∞

(
q2(τ;α) − 2−2/3w2

2(−2−1/3τ − 22/3s2;−22/3s2, α)
)
(τ − x)dτ

)
,

where q(x;α) is the general Hastings-McLeod solution to the PII equation, and
w2(x; s, α) is a special smooth solution to the coupled PII equation.
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Our result: large gap asymptotics

Theorem (D., Long, Xu, Yao and Zhang, in preparation)

For k = 1, 2, . . ., let KPk
II

s be the trace-class operator acting on L2(−s, s) with the kernel
K(k)(u, v; x) and define

FII(s; x) := log det(I − KPk
II

s ).

Then, we have, as s→ +∞,

FII(s; x) = −
c2

0

2(2k + 1)
s2(2k+1) −

c0

k + 1
xs2(k+1) −

1
2

(xs)2 −
2k + 1

4
log s

+

∫ +∞

x
(τ − x)q2

2k(τ)dτ −
1
4

log c0 +
1
12

log 2 + 3ζ′(−1) + o(1),

with c0 =
(2k)!
k!2 .
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The Painlevé II hierarchy

The m-th member of Pm
II is a nonlinear ordinary differential equation of

order 2m defined by(
d
dx

+ 2q
)
Lm

[
qx − q2

]
+

m−1∑
i=1

τi

(
d
dx

+ 2q
)
Li

[
qx − q2

]
= xq−α, m ∈ N+,

where the operator L satisfies the Lenard recursion relation

d
dx
Lj+1f =

(
d3

dx3 + 4f
d
dx

+ 2fx

)
Ljf , L0f =

1
2
, Lj0 = 0, j ≥ 1.

If m = 1, one recovers the PII equation y′′(x) = xy(x) + 2y3(x) − α.

If m = 2, we have

qxxxx − 10qq2
x − 10q2qxx + 6q5 + τ1(qxx − 2q3) = xq − α.
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A special solution to the Painlevé II hierarchy

For simplicity, we focus on the case α = 0 and τk = 0, k = 1, · · · ,m − 1.

For each positive integer m ∈ N+, there exists a real solution qm(x) such
that Cafasso, Claeys and Girotti (IMRN, 2019)

qm((−1)m+1x) ∼ O
(
e−Cs

2m+1
2m

)
, x→ +∞, qm((−1)m+1x) ∼

(
m!2

(2m)!

) 1
2m

|x|
1

2m , x→ −∞.

This solution is called the Hastings-McLeod solution of Pm
II , which ap-

pears in our main theorem.
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Higher order Airy-kernel determinant

Our uniform asymptotic results reproduce the following large gap asymptotics
previously established by Cafasso, Claeys and Girotti (IMRN, 2019)

ln det(I − Kx) = −

∫ +∞

x
(τ − x)q2

2k(τ)dτ

= −c1|x|2+ 1
k −

2k + 1
24k

log |x| +
1

24k
log c0 −

1
12

log k + ζ′(−1) + o(1)

with c0 =
(2k)!
k!2 and c1 = k2

(k+1)(2k+1)

(
(2k)!
k!2

)− 1
k .

Kx is the trace-class operator acting on L2(x,∞) with the following higher order
Airy kernel:

K(u, v) =
1

(2πi)2

∫
γR

dz
∫
γL

dw
e

(−1)k+1
2k+1 (z2k+1−w2k+1)−uz+vw

w − z
.
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Relation with mKdV hierarchy

We have

∂2

∂x2 log FII(s; x) = (qm((−1)m+1x))2 − u(x; s)2,

where qm is the Hastings-McLeod solution of Pm
II , and u(x; s) is a special

smooth solution to the coupled PII hierarchy.
Let

u(x; s) = sy
(
(−1)m+1xs, (2m + 1)−1s2m+1

)
,

we show that y(x, t) is a solution of the mKdV hierarchy

yt +
∂

∂x

(
∂

∂x
+ 2y

)
Lm[yx − y2] = 0, m ∈ N+.

When m = 1, we have the modified Korteweg–de Vries (mKdV) equation

yt − 6y2yx + yxxx = 0, x ∈ R, t > 0.

Therefore, for each m ∈ N+, we have found a Fredholm determinant so-
lution to the mKdV hierarchy.
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Small-time asymptotics of the mKdV solution

T

X
singular region

PII hierarchy 
region PV region

asymptotical 
constant region

Figure: Asymptotic regions for y((−1)m+1X,T) on the (X,T) plane.
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Small-time asymptotics of the mKdV solution

Theorem (D., Long, Xu, Yao and Zhang, in preparation)

With c0 =
(2m)!
(m!)2 and εm ∈ (0, 1

2m+1 ). For any m ∈ N+, there exist constants M,M′ > 0
such that

(i) singular region: uniformly for X ≤ −MT
1

2m+1−εm ,

y((−1)m+1X,T) =

(
|X|
c0T

) 1
2m

+ O
(
|X|−2− 1

m T
1
m

)
, T → 0+;

(ii) PII hierarchy region: uniformly for |X| ≤ MT
1

2m+1−εm ,

y((−1)m+1X,T) =
qm

(
X((2m + 1)T)−

1
2m+1

)
((2m + 1)T)

1
2m+1

+ O
(
T

1
2m+1

)
, T → 0+,

where qm is the Hastings-McLeod solution of the m-th member of the PII hierar-
chy;
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Small-time asymptotics of the mKdV solution

Theorem (Continued)

(iii) PV region: uniformly for X with MT
1

2m+1−εm ≤ X ≤ M′T−
1

2m+1 ,

y((−1)m+1X,T) =
(σV (X) − Xσ′V (X))

1
2

X
+ O(T

1
2m X−1), T → 0+,

where σV is the smooth solution of the σ-form PV equation in (8);

(iv) asymptotically constant region: uniformly for X ≥ M′T−
1

2m+1

y((−1)m+1X,T) = 1 + O
(
T

2
2m+1 (X + c0T)−2

)
, T → 0+.
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Main issue in determining the constant

Due to the integrable structure of the Pk
I kernel, ∂F

∂s (s; x) is related to a
Riemann-Hilbert (RH) problem.
As F(+∞; x) = 0, we have

F(s; x) = −

∫ +∞

s

∂F
∂τ

(τ; x)dτ.

By performing the powerful Deift-Zhou nonlinear steepest descent analy-
sis for the associated RH problem, one obtains the asymptotics of ∂F

∂s (s; x)
as s → −∞, which yields the large gap asymptotics of F except the con-
stant term.

The challenge to determine the constant term lies in the fact that one needs
to understand detailed information of ∂F

∂s (s; x) across an infinite interval
(s,+∞). This seems impracticable since the function ∂F

∂s (s; x) is highly
transcendental. This limitation explains why most of the similar constant
problems remain open.
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Ideas of our approach

Our key idea is to investigate uniform asymptotics of the partial deriva-
tives of F(s; x) with respect to both s and x.

The motivation follows from the following formula

F(s; x) = −

∫ x0

x

∂F
∂µ

(s; µ)dµ −
∫ +∞

s

∂F
∂τ

(τ; x0)dτ, (7)

which is valid for any real x0.

The arbitrariness of x0 provides the flexibility of choosing the variable
|x0| to be large alongside the variable |s|. This is essential in the sense
that the behaviors of ∂F

∂x (s; x) and ∂F
∂s (s; x) degenerate in the asymptotic

regime, which can be readily established through their connections with
RH problems.
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Three asymptotic regions

Both ∂F
∂s (s; x) and ∂F

∂x (s; x) exhibit qualitatively different asymptotic behaviors
in three different regions of the (x, s)-plane.

Exponential decay region

Algebraic growth region

Transition region

Transition region

Figure: The three regions in asymptotic studies of ∂
∂s F(s; x) and ∂

∂x F(s; x). The expo-
nentially decay and algebraic growth regions are separated by the transitional region
in the middle. The dashed curve stands for the critical curve x = −αks2k+1, where αk

is given in (5).
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The integration contour

We will set x0 = ±|s|2k+1 in (7), replace the contour of integration therein by
the lines depicted in Figure below.

Figure: The contours of integration in the (x, s)-plane. We choose the red lines if x0 > 0
and the blue lines if x0 < 0. The dashed curve is the critical curve x = −αks2k+1, where
αk is given in (5).
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Summary

We present a novel approach to establish the multiplicative constant in the
large gap asymptotics of unitary random matrix ensembles near critical
points.

The constant term involves of an integral of particular real and pole-free
solutions for P2k

I or P2k
II .

We have found a special solution of the mKdV hierarchy expressed in
terms of the Fredholm determinant associated with the Pk

II kernel. The
small time asymptotics of the solution is derived on the whole real line.

Our analysis employs a delicate uniform steepest descent method for RH
problems. This approach is expected to be applied to for determine critical
constants in similar problems from mathematical physics.
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Thank You!

&

Happy Birthday, Peter!
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