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Classical laws for iid sum

Consider a sequence of iid r.v.s X1, X»,... with mean 0 and variance 1. Let
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Laws for extreme random matrix eigenvalue

Consider a doubly infinite array of independent (up to symmetry z;; = z;;) real
(B=1) or complex (8 =2) r.v.s X = (xij); en: (i) mean 0O, (ii) ]E:cfj = 14 6;;
(8 =1) and E|z;;|* = 1,Ez}; = 6;; (8 = 2), (iii) existence of all moments.

Wigner Minor Process Let X() be the N x N upper left corner of X. Denote
1
v N

and let XZ(N) be the i-th largest eigenvalue of HW),

HWN = X N=12,...

Bai-Yin Law [Bai-Yin '88]
XV 25 o,
Tracy-Widom Law [Forrester '93] [Tracy-Widom '94 '96] etc.

AN = N2 —2) = Tw,.

Question[Kalai '13] Any logarithmic type law?



Paquette-Zeitouni’s LFL for GUE

Theorem(Law of Fractional Logarithm) [Paquette-Zeitouni '17] For GUE
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Conjecture 1: ¢; = ¢, = 41/3

Conjecture 2: Universality (other symmetry class and entry distribution)?

Remark: The proof in [Paquette-Zeitouni '17] heavily relies on the de-
terminantal structure of GUE minor process [Johansson-Nordenstam '06],

[Forrester-Nagao '08], etc.




BBBK'’s lower limit for GUE

Theorem|[Baslingker-Basu-Bhattacharjee-Krishnapur '24b] For GUE
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Remark Two key inputs in [BBBK '24Db]

(i) A sharp lower tail estimate of A&N) for all B-ensembles from [Baslingker-
Basu-Bhattacharjee-Krishnapur '24a]

(ii) A decorrelation estimate via passage times in Brownian last passage per-
colation [Baryshnikov '01]



LFL for Wigner matrices

Theorem [B.-Cipolloni-Erd&és-Henheik-Kolupaiev '25a] For Wigner minor
process in either symmetric class, 8 = 1 for real symmetric and g = 2 for
complex Hermitian, we have almost surely
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Remark: Our overall proof strategy is not via a comparison as there is no
GOE result, although for the one point tail probability estimate we do rely
on comparison with [BBBK '24a].



All Possible Limit Points

Corollary [B.-Cipolloni-Erdés-Henheik-Kolupaiev '25a] For Wigner minor
process in either symmetric class, 8 = 1 for real symmetric and g = 2 for
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complex Hermitian, we have almost surely
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where £ is the closure of a set £ C R.




Key steps for classical LIL

For some sequence a, — oo but a,/y/n — 0, we set the event
E, = {Sn > an\/ﬁ}
1: One point small deviation
P(E,) = exp(—az(1 4+ o(1))/2)
2: Decorrelation

IP)(En M En—l—m) — P(ER)P(En—I-m)(l + 0(1))7 if m>n

3: Correlation

E, ~ E, 4+, ifm<Kn



Small deviation of extreme eigenvalue

Proposition Consider general Wigner matrices. For any (big) K > 0 and
(small) € > 0, there exist C; = C1(K,e) and Cr = Ca(K,¢), s.t.
(i) [Right tail] For any 1 < z < K(log N)?/3,
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(i) [Left tail] For any 1 < =z < K(log N)1/3,

O35t exp ( _ 2’34(1 1 s)a:3> <POWY < —2) < Coexp ( _ 2’24(1 _ s)az3>

Remark Part of the results are from [Erd6s-Xu '23]. The rest is obtained
via a comparison with [BBBK '24a], using the Green function comparison
approach in [Erd6s-Xu '23] for small deviation regime. Also see [Aubrun '05],
[Ledoux-Rider '10], [Paquette-Zeitouni '14] etc. for earlier results.



Correlation-Decorrelation transition

Theorem|[B.-Cipolloni-Erd&s-Henheik-Kolupaiev '25b] Consider general
real (3 =1) or complex (8 = 2) Wigner minor process.

(i) For 1 « k< N?/3-¢

WL A0)
vk

(ii) For N2/3tc <L < N'=¢ and any smooth compactly supported test-
functions F, G

E[F(Y)GO)] —E[F()]E[GRTT)] = 0.

Remark 1: The threshold N?/3 is indicated by [Forrestor-Nagao '11].

Remark 2: For LFL, we need above transition for small/moderate deviation
regime.
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Upper bound for |limsup: Subsequence
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Subsequence: Let a < 3 and N, = [k9] s.t.

Nk+1 - Nk; < Nk2/3

Since

ZPP\&N;& > ¢(log Nk)2/3] < Zk—a%(l_g)@/z <o
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Upper bound for |limsup: Full sequence

Lemma[Correlation estimate] For any § > 0

> P(&k(6)) < o0
k

where

Ex(9) ={3n e [Neo14+1,N] : A > (e + 6)(log n)2/3}

M {/\gN‘“) < c(log Nk)2/3}

Consequently

lim su L < 5.
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Remark: Essentially, we need bound )\gNk‘) — A&”) from below, uniformly in n.
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Correlation: Key equation

Write
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Key Equation
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Correlation: Martingale Approach

By local law and rigidity [Erd&s-Yau-Yin '12]

N S .
X7 = X0 > 2 ([ - 1) 4+ 0<(n7*0)

Sum up for any n € [Ny_1 + 1, N],
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Conclude the proof by maximal inequality of martingale.
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Lower bound for limsup: Decorrelation
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Proposition[Decorrelation estimate] For any N1, N>, € N and any z1,x> €
[K~1, K] with any large constant K > 0, we set the tail events

Fio(xg) = {A(ND z,(log Ne)2/3} ¢ =1,2.
%+€ 1—¢
If N5° < No— Np < N, © we have

]P)(./Tl(ajl) M .7:2(3:2)) — P(fl(iﬁl))]P)(FQ(xQ))(l + O(NQ_(S))

Remark In the spirit of BC II, decorrelation allows one to prove the lower

bound for a sufficiently independent subsequence.
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Decorrelation: a dynamic approach

We rely on the dynamic approach [Cipolloni-Erdés-Schroder '23].

Dynamic of matrices

dB(n)
dH™ = —L_ HY =H™,  n=NN—k, k> N2/
NG
Dynamic of minor process
_ db () 1 1
dAZ(”):’—()+—Z~() ——dt, n=N,N—k
v Bn NZ XM (@) = N (@)

Here {bZ(N)(t)} and {ng_k)(t)} are two collections of independent standard
BM, but these two collections are dependent

A, 60 (0] = (wi(HO (1), wi (YD (1)) “dt = NP (pyat.

Heuristic: XgN)(t) and XgN_k)(t) will be indep. after sufficiently long time
(t = N34y if © NN M (¢) is small.  For the indep. of the X{"’(0) and
XV (0), we do a Green function comparison with X (¢) and X{ "% (¢).
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Eigenvector overlap

Green function

GM(2) = (HM™ — )1,

Overlap bound For z, = E, + in,, with n, ~ N—2/3+t¢
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The estimate of the LHS is done by two-G local law [Cipolloni-Erd&s-Schroder
'22].
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THANK YOU!
&
HAPPY BIRTHDAY, PETER!
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